Archives par étiquette : argument de l’Apocalypse

Éléments d’un contextualisme dialectique

Éléments d’un contextualisme dialectique

Paul Franceschi

Université de Corse

Paul Franceschi

Fontaine du Salario

Lieu-dit Morone

20000 Ajaccio

France

RÉSUMÉ Dans ce qui suit, je m’attache à présenter les éléments d’une doctrine philosophique, qui peut être définie comme un contextualisme dialectique. Je m’efforce tout d’abord d’en définir les éléments constitutifs, à travers les dualités et pôles duaux, le principe d’indifférence dialectique et le biais d’uni-polarisation. Je m’attache ensuite à souligner l’intérêt spécifique de cette doctrine au sein d’un domaine particulier de la méta-philosophie : la méthodologie utilisée pour la résolution des paradoxes philosophiques. Je décris enfin des applications de cette dernière à l’analyse des paradoxes suivants : le paradoxe de Hempel, le paradoxe de l’examen-surprise et l’argument de l’Apocalypse.

ABSTRACT In what follows, I strive to present the elements of a philosophical doctrine, which can be defined as dialectical contextualism. I proceed first to define its basic elements, namely, dualities and polar contraries, the principle of dialectical indifference and the one-sidedness bias. I emphasize then the special importance of this doctrine in a specific field of meta-philosophy : the methodology for solving philosophical paradoxes. Finally, I describe several applications of this methodology on the analysis of the following paradoxes : Hempel’s paradox, the surprise examination paradox and the Doomsday Argument.


Éléments d’un contextualisme dialectique

Paul FRANCESCHI

Dans ce qui suit, je m’attacherai à présenter les éléments d’une doctrine philosophique spécifique, qui peut être définie comme un contextualisme dialectique. Je m’efforcerai tout d’abord de préciser les éléments essentiels qui fondent cette doctrine, en particulier les dualités et pôles duaux, le principe d’indifférence dialectique et le biais d’uni-polarisation. Je m’attacherai ensuite à en décrire l’intérêt au niveau méta-philosophique, en particulier en tant que méthodologie pour aider à la résolution des paradoxes philosophiques. Je décrirai enfin des applications de cette méthodologie à l’analyse des paradoxes philosophiques suivants : le paradoxe de Hempel, le paradoxe de l’examen-surprise et l’argument de l’Apocalypse.

Le contextualisme dialectique décrit ici est fondé sur un certain nombre d’éléments constitutifs qui présentent une nature spécifique. Au nombre de ces derniers figurent : les dualités et pôles duaux, le principe d’indifférence dialectique et le sophisme d’uni-polarisation. Il convient de les analyser tour à tour.

1. Dualités et pôles duaux

Je m’attacherai tout d’abord à définir la notion de pôles duaux (polar opposites)1. Bien qu’intuitive, une telle notion nécessite d’être décrite de manière plus précise. Des exemples de pôles duaux sont ainsi statique/dynamique, interne/externe, qualitatif/quantitatif, etc. Nous pouvons définir les pôles duaux comme des concepts (que nous pouvons dénommer A et Ā) qui se présentent par paires, et qui sont tels que chacun d’eux est défini comme le contraire de l’autre. Par exemple, interne peut être défini comme le contraire d’externe, et de manière symétrique, externe est défini comme le contraire d’interne. En un certain sens, il n’y a pas de notion primitive ici et aucun des deux pôles duaux A et Ā ne peut être considéré comme une telle notion primitive. Considérons tout d’abord une dualité donnée, que nous pouvons dénoter par A/Ā, où A et Ā constituent des concepts duaux. Une telle dualité est représentée sur la figure ci-dessous :

Figure 1. Les pôles duaux A et Ā

À ce stade, nous pouvons donner également une énumération2 (qui présente nécessairement un caractère partiel) des dualités :

Interne/Externe, Quantitatif/Qualitatif, Visible/Invisible, Absolu/Relatif, Abstrait/Concret, Statique/Dynamique, Diachronique/Synchronique, Unique/Multiple, Extension/Restriction, Esthétique/Pratique, Précis/Vague, Fini/Infini, Simple/Composé, Individuel/Collectif, Analytique/Synthétique, Implicite/Explicite, Volontaire/Involontaire

Afin de caractériser les pôles duaux avec davantage de précision, il convient de s’attacher à les distinguer par rapport à d’autres concepts. Nous présenterons ainsi plusieurs propriétés des pôles duaux, qui permettent de les différencier d’autres concepts voisins. Les pôles duaux sont ainsi des concepts neutres, de même que des qualités simples ; en outre, ils se distinguent des notions vagues. En premier lieu, deux pôles duaux A et Ā constituent des concepts neutres. Ils peuvent ainsi être dénotés par A0 et Ā0. Nous pouvons ainsi les représenter de la manière suivante :

Figure 2. Les pôles duaux neutres A0 et Ā0

Les pôles duaux constituent des concepts neutres, c’est-à-dire des concepts qui ne présentent aucune nuance méliorative ou péjorative. En ce sens, externe, interne, concret, abstrait, etc., constituent des pôles duaux, à la différence de concepts tels que beau, laid, courageux, qui présentent une nuance soit méliorative soit péjorative, et qui sont donc non-neutres. Le fait que les pôles duaux soient neutres possède son importance, car cela permet de les distinguer de concepts qui possèdent une connotation positive ou négative. Ainsi, la paire de concepts beau/laid ne constitue pas une dualité et beau et laid ne sont donc pas des pôles duaux au sens de la présente construction. En effet, beau possède une connotation positive et laid présente une nuance péjorative. Dans ce contexte, nous pouvons les dénoter par beau+ et laid.

Il convient de souligner, en second lieu, que les deux pôles duaux d’une même dualité correspondent à des qualités simples, par opposition aux qualités composées. La distinction entre qualités simples et composées peut être effectuée de la manière suivante. Soient A1 et A2 des qualités simples. Dans ce cas, A1 ˄ A2, de même que A1 ˅ A2 sont des qualités composées. Pour prendre un exemple, statique, qualitatif, externe sont des qualités simples, alors que statique et qualitatif, statique et externe, qualitatif ou externe, sont des qualités composées. Une définition plus générale est ainsi la suivante : soient B1 et B2 des qualités simples ou composées, dans ce cas B1 ˄ B2, de même que B1 ˅ B2 sont des qualités composées. De manière incidente, ceci met également en évidence pourquoi les paires de concepts rouge/non-rouge, bleu/non-bleu ne peuvent pas être considérés comme des pôles duaux. En effet, non-rouge peut ainsi être défini en tant que qualité composée de la manière suivante : violet ˅ indigo ˅ bleu ˅ vert ˅ jaune ˅orange ˅ blanc ˅ noir. Dans ce contexte, on peut assimiler non-bleu à la négation-complément de bleu, une telle négation-complément étant définie à l’aide de qualités composées.

Compte tenu de la définition précédente, nous sommes également en mesure de distinguer les pôles duaux des objets vagues. Nous pouvons observer tout d’abord que les pôles duaux et les objets vagues possèdent en commun certaines propriétés. En effet, les objets vagues se présentent par paires, de la même manière que les pôles duaux. De plus, les concepts vagues sont considérés classiquement comme possédant une extension et une anti-extension, qui sont mutuellement exclusives. Une telle caractéristique est également partagée par les pôles duaux. À titre d’exemple, qualitatif et quantitatif s’assimilent à une extension et à une anti-extension, qui présentent la propriété d’être mutuellement exclusives ; il en va de même pour statique et dynamique, etc.

Cependant, il convient de souligner les différences existant entre les deux catégories de concepts. Une première différence (a) réside ainsi dans le fait que l’union de l’extension et l’anti-extension des concepts vagues n’est pas exhaustive, en ce sens qu’elles admettent des cas-limites (et aussi des cas-limites de cas-limites, etc. donnant ainsi naissance à une hiérarchie du vague d’ordre n), qui constitue une zone de pénombre. À l’inverse, les pôles duaux ne possèdent pas nécessairement une telle caractéristique. En effet, l’union des pôles duaux peut être soit exhaustive, soit non-exhaustive. Par exemple, la dualité abstrait/concret est, de manière intuitive, exhaustive, car il ne semble pas exister d’objets qui ne sont ni abstraits ni concrets. Il en va de même pour la dualité vague/précis : intuitivement, il n’existe pas en effet d’objets qui ne sont ni vagues ni précis, et qui appartiendraient à une catégorie intermédiaire. Ainsi, à la différence des objets vagues, il existe des pôles duaux dont l’extension et l’anti-extension se révèle exhaustive.

Il convient de mentionner, en second lieu, une autre différence (b) entre les pôles duaux et les objets vagues. En effet, les pôles duaux constituent des qualités simples, alors que les objets vagues peuvent consister en des qualités simples ou composées. Il existe en effet des concepts dénommés objets vagues multi-dimensionnels, tels que la notion de véhicule, de machine, etc. Enfin, une dernière différence entre les deux catégories d’objets (c) réside dans le fait que certains pôles duaux présentent une nature intrinsèquement précise. Tel est notamment le cas de la dualité individuel/collectif, qui est susceptible de donner lieu à une définition tout à fait précise.

2. Le principe d’indifférence dialectique

À partir des notions de dualité et de pôles duaux qui viennent d’être définis, nous sommes en mesure de définir également une notion de point de vue, relatif à une dualité ou un pôle dual donné. Ainsi, nous avons tout d’abord la notion de point de vue correspondant à une dualité donnée A/Ā : ceci correspond par exemple au point de vue de la dualité extension/restriction, celui de la dualité qualitatif/quantitatif, ou de la dualité diachronique/synchronique, etc. Il en résulte également la notion de point de vue relatif à un pôle donné d’une dualité A/Ā. Ainsi, on a par exemple le point de vue par extension (au niveau de la dualité extension/restriction), de même que le point de vue par restriction. De même, il en résulte le point de vue ou angle de vue qualitatif, ainsi que le point de vue ou angle de vue quantitatif, etc. (au niveau de la dualité qualitatif/quantitatif). Ainsi, lorsqu’on considère un objet donné o (que ce soit un objet concret ou bien un objet abstrait telle que par exemple une proposition ou un raisonnement), on est susceptible d’envisager ce dernier par rapport à différentes dualités, et au niveau de ces dernières, par rapport à chacun de ses deux pôles duaux.

L’idée sous-jacente inhérente aux points de vue relatifs à une dualité donnée, ou à un pôle donné d’une dualité, est que chacun des deux pôles d’une même dualité, toutes choses étant par ailleurs égales, possède une égale légitimité. En ce sens, si on considère un objet o du point de vue d’une dualité A/Ā, il convient de ne pas privilégier l’un des pôles par rapport à l’autre. Afin d’obtenir un point de vue objectif par rapport à une dualité A/Ā, il convient de se placer tout à tour du point de vue du pôle A, puis de celui du pôle Ā. Car une approche qui n’aborderait que le point de vue de l’un des deux pôles se révélerait partielle et tronquée. Le fait de considérer tour à tour le point de vue des deux pôles, lors de l’étude d’un objet o et de la classe de référence qui lui est associée, permet d’éviter une démarche subjective et de satisfaire, autant que possible, les besoins de l’objectivité.

On le voit, l’idée qui sous-tend la notion de point de vue peut être formalisée en un principe d’indifférence dialectique, de la manière suivante :

(PRINCIPE D’INDIFFERENCE DIALECTIQUE)Lorsqu’on considère un objet donné o et la classe de référence E qui lui est associée, sous l’angle de la dualité A/Ā, toutes choses étant par ailleurs égales, il convient d’accorder une égale importance au point de vue du pôle A et au point de vue du pôle Ā.

Ce principe est formulé en termes de principe d’indifférence : si l’on considère un objet o sous l’angle d’une dualité A/Ā, il n’y a pas lieu de privilégier le point de vue A par rapport au point de vue Ā, et sauf élément contraire résultant du contexte, on doit placer à égalité les points de vue A et Ā. Une conséquence directe de ce principe est que si l’on considère le point de vue du pôle A, il est nécessaire de prendre également en considération le point de vue du pôle opposé Ā (et réciproquement). La nécessité de prendre en considération les deux points de vue, celui résultant du pôle A et celui associé au pôle Ā, répond au souci d’analyser l’objet o et la classe de référence qui lui est associée d’un point de vue objectif. Cette objectivité est atteinte, autant que faire se peut, par la prise en considération des points de vue complémentaires qui sont ceux des pôles A et Ā. Chacun de ces points de vue possède en effet, eu égard à la dualité A/Ā, un droit égal à la pertinence. Dans de telles circonstances, lorsque seul le pôle A ou (exclusivement) le pôle Ā est pris en considération, il s’agit alors d’un point de vue que l’on peut appeler uni-polarisé. À l’inverse, le point de vue qui réalise la synthèse des points de vue correspondants aux pôles A et Ā, est par nature bi-polarisé. Fondamentalement, une telle démarche se révèle d’essence dialectique. En effet, l’étape d’analyse successive des points de vue complémentaires par rapport à une classe de référence donnée, est destinée à permettre, dans une étape ultérieure, une synthèse finale, qui résulte de la prise en compte conjointe des points de vue correspondant à la fois aux pôles A et Ā. Dans la présente construction, le processus de confrontation des différents points de vue pertinents par rapport à une dualité A/Ā est destiné à construire, cumulativement, un point de vue plus objectif et exhaustif que celui, uni-polarisé et nécessairement partiel, qui résulte de la prise en compte des données qui résultent d’un seul des deux pôles.

La définition du principe d’indifférence dialectique qui est proposée ici se réfère à une classe de référence E, qui se trouve associée à l’objet o. La classe de référence3 est constituée par un ensemble de phénomènes ou d’objets. Plusieurs exemples peuvent en être donnés : la classe des êtres humains ayant un jour existé, la classe des événements futurs de la vie d’une personne, la classe des parties du corps d’une personne, la classe des corbeaux, etc. Nous examinerons, dans ce qui suit, un certain nombre d’exemples. La mention d’une telle classe de référence possède son importance, car sa définition-même se trouve associée à la dualité A/Ā précitée. En effet, la classe de référence peut être définie du point de vue de A ou bien du point de vue de Ā. Une telle particularité nécessite d’être soulignée et nous sera utile lors de la définition du biais qui se trouve associé à la définition-même du principe d’indifférence dialectique : le biais d’uni-polarisation.

3. Caractérisation du biais d’uni-polarisation

La formulation précédente du principe d’indifférence dialectique suggère, de manière directe, une erreur de raisonnement d’un certain type. De manière informelle, une telle erreur de raisonnement consiste à privilégier un point de vue lorsqu’on s’intéresse à un objet donné, et à négliger le point de vue opposé. De manière plus formelle, dans le contexte qui vient d’être décrit, une telle erreur de raisonnement consiste, lorsqu’on considère un objet o et la classe de référence qui lui est associée, à ne prendre en considération que le point de vue du pôle A (respectivement Ā), en occultant complètement le point de vue du pôle dual Ā (respectivement A) pour définir cette classe de référence. Nous dénommerons biais d’uni-polarisation un tel type d’erreur de raisonnement. Les conditions de ce type de biais, en violation du principe d’indifférence dialectique, méritent toutefois d’être précisées. En effet, dans le présent contexte, on peut considérer qu’il existe certains cas, où la bi-polarisation par rapport à une dualité donnée A/Ā n’est pas requise. Tel est le cas lorsque les éléments du contexte ne présupposent pas des conditions d’objectivité et d’exhaustivité des points de vue. Ainsi, un avocat qui ne ferait valoir que les éléments à la décharge de son client, en ignorant complètement les éléments à charge, ne commettrait pas le type d’erreur de raisonnement précité. Dans une telle circonstance en effet, l’avocat ne commettrait pas un biais d’uni-polarisation dommageable, puisqu’il s’agit de la fonction qui lui est propre. Il en irait de même dans un procès pour le procureur qui, à l’inverse, mettrait uniquement l’accent sur les éléments à charge de la même personne, en ignorant complètement les éléments à décharge. Dans une telle situation également, le biais d’uni-polarisation en résultant ne serait pas inapproprié, car il résulte bien des éléments du contexte qu’il s’agit bien du rôle exact mais limité qui est assigné au procureur. En revanche, un juge qui ne prendrait en compte que les éléments à charge de l’accusé, ou bien qui commettrait l’erreur inverse, de ne considérer que les éléments à décharge de ce dernier, commettrait bien un biais d’uni-polarisation inapproprié, car le rôle-même du juge implique qu’il prenne en considération les deux catégories d’éléments et que son jugement provienne de la synthèse qui en résulte.

En outre, ainsi que nous l’avons évoqué plus haut, la mention d’une classe de référence associée à l’objet o se révèle importante. En effet, ainsi que nous aurons l’occasion de le constater avec l’analyse des exemples qui suivent, sa définition-même se trouve associée à une dualité A/Ā. Et la classe de référence peut être définie soit du point de vue de A, soit du point de vue de Ā. Une telle particularité a pour conséquence que tous les objets ne sont pas susceptibles de donner lieu à un biais d’uni-polarisation. En particulier, les objets auxquels ne sont pas associés une classe de référence qui est elle-même susceptible d’être envisagée sous l’angle d’une dualité A/Ā, ne donnent pas lieu à un tel biais d’uni-polarisation.

Avant d’illustrer la présente construction à l’aide de plusieurs exemples concrets, il apparaît utile à ce stade, de considérer le biais d’uni-polarisation qui vient d’être défini, et qui résulte de la définition-même du principe d’indifférence dialectique, à la lumière de plusieurs notions similaires. De manière préliminaire, nous pouvons observer qu’une description générale de ce type d’erreur de raisonnement avait déjà été formulée, en des termes voisins, par John Stuart Mill (On Liberty, II) :

He who knows only his own side of the case, knows little of that. His reasons may be good, and no one may have been able to refute them. But if he is equally unable to refute the reasons on the opposite side ; if he does not so much know what they are, he has no ground for preferring either opinion.

Dans la littérature récente, une notion très voisine a également été décrite. Il s’agit en particulier du biais dialectique défini notamment par Douglas Walton (1997, 1999). Walton (1999, pp. 76-77) se place ainsi dans le cadre la théorie dialectique des biais, qui oppose les arguments uni-polarisés aux arguments bi-polarisés :

The dialectical theory of bias is based on the idea […] that an argument has two sides. […] A one-sided argument continually engages in pro-argumentation for the position supported and continually rejects the arguments of the opposed side in a dialogue. A two-sided (balanced) argument considers all arguments on both sides of a dialogue. A balanced argument weights each argument against the arguments that have been opposed to it.

Walton décrit ainsi le biais dialectique (dialectical bias) comme un point de vue uni-polarisé qui survient au cours de l’argumentation. Le biais dans le raisonnement consiste ainsi à ne prendre en compte qu’un point de vue concernant l’argument en question, alors même que l’autre point de vue pourrait se révéler décisif quant à la conclusion à en tirer. Le raisonnement correspondant se trouve biaisé, en ce sens qu’il ne présente qu’un aspect des éléments qui justifient un jugement ou un point de vue donné, en occultant complètement l’autre aspect des éléments pertinents relatifs à ce même argument.

Walton souligne aussi que le biais dialectique, qui est très répandu dans l’argumentation humaine, ne constitue pas nécessairement une erreur de raisonnement. Suivant en cela la distinction entre «bon» et «mauvais» biais due à Antony Blair (1988), Walton considère que le biais dialectique est incorrect seulement dans certaines conditions, et en particulier s’il survient dans un contexte qui est supposé être équilibré, c’est-à-dire où les deux facettes du raisonnement correspondant sont censées être mentionnées (p. 81) :

Bad bias can be defined as “pure (one-sided) advocacy” in a situation where such unbalanced advocacy is normatively inappropriate in argumentation.

En outre, ainsi que nous aurons de le constater au moyen d’un exemple, le biais d’uni-polarisation pêche par le fait qu’un certain nombre de prémisses sont omises dans le raisonnement correspondant. Ce point est essentiel, car lorsque ces prémisses manquantes sont replacées au sein de l’argument, la conclusion qui en résulte n’est plus valide, et une conclusion radicalement différente prévaut alors.

4. Instance du biais d’uni-polarisation

Afin d’illustrer les notions précédentes, il s’avère intéressant, à ce stade, de donner un exemple du biais d’uni-polarisation. À cette fin, considérons l’instance suivante, qui consiste en une forme de raisonnement, mentionnée par Philippe Boulanger (2000, p. 3)4, qui l’attribue au mathématicien Stanislas Ulam. Le biais d’uni-polarisation s’y manifeste sous une forme déductive. Ulam estime ainsi que si une entreprise devait atteindre un niveau de main d’oeuvre suffisamment important, son niveau de performance serait paralysé par le grand nombre de conflits internes qui en résulteraient. Ulam estime ainsi que le nombre de conflits entre personnes augmenterait selon le carré du nombre n d’employés, alors que l’impact sur le travail qui en résulterait ne progresserait qu’en fonction de n. Ainsi, selon cet argument, il n’est pas souhaitable que le nombre d’employés au sein d’une entreprise devienne important. Cependant, il s’avère que le raisonnement d’Ulam est fallacieux, comme le souligne Boulanger, car il met exclusivement l’accent sur les relations conflictuelles entre employés. Or les n2 relations parmi les employés de l’entreprise peuvent être de nature conflictuelle, mais peuvent consister aussi bien en relations de collaboration tout à fait bénéfiques pour l’entreprise. Il n’y a donc pas de raison de privilégier les relations conflictuelles par rapport aux relations de collaboration. Et lorsque parmi les n2 relations qui s’établissent entre les employés de l’entreprise, certaines sont d’authentiques relations de collaboration, cela a pour effet, au contraire, d’améliorer la performance de l’entreprise. Par conséquent, on ne peut pas conclure légitimement qu’il n’est pas souhaitable que l’effectif d’une entreprise atteigne une taille importante.

Dans un souci de clarté, il s’avère utile de formaliser quelque peu le raisonnement précédent. Il apparaît ainsi que le raisonnement d’Ulam peut être présenté de la manière suivante :

(D1Ā) si <une entreprise présente un nombre important d’employés>

(D2Ā) alors <il en résultera n2 relations conflictuelles>

(D3Ā) alors des effets négatifs en résulteront

(D4Ā)  le fait qu’ <une entreprise ait un nombre important d’employés> est mauvais

Ce type de raisonnement présente la structure d’un biais d’uni-polarisation, car il met uniquement l’accent sur les relations conflictuelles (qui concernent le pôle de dissociation de la dualité association/dissociation), en passant sous silence un argument parallèle présentant la même structure qui pourrait être légitimement soulevé, mettant l’accent sur les relations de collaboration (associées au pôle d’association), qui constituent l’autre aspect pertinent sur ce sujet particulier. Cet argument parallèle est le suivant :

(D1A) si <une entreprise présente un nombre important d’employés>

(D2A) alors <il en résultera n2 relations de collaboration>

(D3A) alors des effets positifs en résulteront

(D4A)  le fait qu’ <une entreprise ait un nombre important d’employés> est bon

Ceci met finalement en lumière comment les deux formulations de l’argument conduisent à des conclusions contradictoires, c’est-à-dire (D4Ā) et (D4A). À ce stade, il est utile de souligner la structure-même de la conclusion du raisonnement ci-dessus, qui est la suivante :

(D5Ā) la situation s est mauvaise du point de vue Ā (dissociation)

alors que la conclusion du raisonnement parallèle est la suivante :

(D5A) la situation s est bonne du point de vue A (association)

Mais si le raisonnement avait été complet, en prenant en compte les deux points de vue, une autre conclusion en aurait résulté :

(D5Ā) la situation s est mauvaise du point de vue Ā (dissociation)

(D5A) la situation s est bonne du point de vue A (association)

(D6A/Ā) la situation s est mauvaise du point de vue Ā (dissociation) et bonne du point de vue A (association)

(D7A/Ā)  la situation s est neutre du point de vue de la dualité A/Ā (association/dissociation)

Et une telle conclusion s’avère tout à fait différente de celle qui résulte de (D5Ā) et de (D5A).

Finalement, nous sommes en mesure de caractériser le biais d’uni-polarisation qui vient d’être décrit dans le cadre du présent modèle : l’objet o est le raisonnement précité, la classe de référence est celle des relations existant entre les employés d’une entreprise, et la dualité correspondante — permettant de définir la classe de référence — est la dualité dissociation/association.

5. Analyse dichotomique et méta-philosophie

Le principe d’indifférence dialectique précité et son corollaire — le biais d’uni-polarisation — est susceptible de trouver des applications dans plusieurs domaines5. Nous nous intéresserons, dans ce qui suit, à ses applications à un niveau méta-philosophique, à travers l’analyse de plusieurs paradoxes philosophiques contemporains. La méta-philosophie constitue cette branche de la philosophie dont l’objet est l’étude de la nature de la philosophie, de sa finalité et de ses méthodes propres. Dans ce contexte, un domaine spécifique au sein de la méta-philosophie est celui de la méthode à employer pour s’attacher à résoudre, ou à progresser vers la résolution des paradoxes ou des problèmes philosophiques. C’est dans ce domaine spécifique que s’inscrit la présente construction, en ce sens qu’elle propose l’analyse dichotomique comme un outil qui peut se révéler utile pour aider à la résolution de paradoxes ou de problèmes philosophiques.

L’analyse dichotomique, en tant que méthodologie pouvant être utilisée pour la recherche de solutions à certains paradoxes ou problèmes philosophiques, résulte directement de l’énoncé-même du principe d’indifférence dialectique. L’idée générale qui sous-tend la démarche dichotomique d’analyse des paradoxes, est que deux versions, correspondant à l’un et l’autre pôle d’une dualité donnée, peuvent se trouver mêlées dans un paradoxe philosophique. La démarche consiste alors à trouver une classe de référence associée au paradoxe en question et la dualité A/Ā correspondante, ainsi que les deux variations du paradoxe qui en résultent et qui s’appliquent à chacun des pôles de cette dualité. Cependant, toute dualité ne convient pas pour cela, car pour nombre de dualités, la version correspondante du paradoxe demeure par essence inchangée, quel que soit le pôle que l’on envisage. Dans la méthode dichotomique, il s’agit de s’attacher à trouver une classe de référence et une dualité associée pertinente, telle que le point de vue de chacun de ses pôles conduise effectivement à deux versions structurellement différentes du paradoxe, ou bien à la disparition du paradoxe selon le point de vue de l’un des pôles. Ainsi, lorsque l’on envisage le paradoxe sous l’angle des deux pôles A et Ā, et que cela n’a aucune incidence concernant le paradoxe lui-même, la dualité A/Ā correspondante ne se révèle donc pas, de ce point de vue, pertinente.

L’analyse dichotomique ne constitue pas un outil qui prétend résoudre tous les problèmes philosophiques, loin s’en faut, mais seulement une méthodologie qui est susceptible d’apporter un éclairage pour certains d’entre eux. Dans ce qui suit, nous nous attacherons à illustrer, à travers plusieurs travaux de l’auteur, comment l’analyse dichotomique peut s’appliquer pour progresser vers la résolution de trois paradoxes philosophiques contemporains : le paradoxe de Hempel, le paradoxe de l’examen-surprise et l’argument de l’Apocalypse.

De manière préliminaire, on peut observer ici que dans la littérature, on trouve également un exemple d’analyse dichotomique de paradoxe chez David Chalmers (2002). Chalmers s’attache ainsi à montrer comment le paradoxe des deux enveloppes comporte deux versions fondamentalement distinctes, dont l’une correspond à une version finie du paradoxe et l’autre à une version infinie. Une telle analyse, bien que conçue indépendamment de la présente construction, peut ainsi être caractérisée comme une analyse dichotomique fondée sur la dualité fini/infini.

Figure 3. Pôles duaux dans l’analyse de David Chalmers du paradoxe des deux enveloppes

6. Application à l’analyse des paradoxes philosophiques

À ce stade, il convient d’appliquer ce qui précède à l’analyse de problèmes concrets. Nous nous efforcerons ainsi d’illustrer cela à travers l’analyse de plusieurs paradoxes philosophiques contemporains : le paradoxe de Hempel, le paradoxe de l’examen-surprise et l’argument de l’Apocalypse. Nous nous attacherons à montrer comment un problème de biais d’uni-polarisation associé à un problème de définition d’une classe de référence se rencontre dans l’analyse des paradoxes philosophiques précités. En outre, nous montrerons comment la définition-même de la classe de référence associée à chaque paradoxe est susceptible d’être qualifiée à l’aide des pôles duaux A et Ā d’une dualité A/Ā tels qu’ils viennent d’être définis.

6.1. Application à l’analyse du paradoxe de Hempel

Le paradoxe de Hempel est basé sur le fait que les deux assertions suivantes :

(H) Tous les corbeaux sont noirs

(H*) Tout ce qui est non-noir est un non-corbeau

sont logiquement équivalentes. Par sa structure, (H*) se présente en effet comme la forme contraposée de (H). Il en résulte que la découverte d’un corbeau noir confirme (H) et également (H*), mais aussi que la découverte d’une chose non-noire qui n’est pas un corbeau telle qu’un flamand rose ou même un parapluie gris, confirme (H*) et donc (H). Cependant, cette dernière conclusion apparaît comme paradoxale.

Nous nous attacherons maintenant à détailler l’analyse dichotomique sur laquelle se trouve basée la solution proposée dans Franceschi (1999). La démarche se trouve fondée sur la recherche d’une classe de référence associée à l’énoncé du paradoxe, qui est susceptible d’être définie à l’aide d’une dualité A/Ā. Si l’on examine ainsi avec soin les concepts et les catégories qui sous-tendent les propositions (H) et (H*), on remarque tout d’abord que ceux-ci sont au nombre de quatre : les corbeaux, les objets noirs, les objets non-noirs et les non-corbeaux. Un corbeau tout d’abord se trouve défini de manière précise dans la taxinomie au sein de laquelle il s’insère. Une catégorie comme celle des corbeaux peut être considérée comme bien définie, car elle est basée sur un ensemble de critères précis définissant l’espèce corvus corax et permettant l’identification de ses instances. De même, la classe des objets noirs peut être décrite avec précision, à partir d’une taxinomie des couleurs établie par rapport aux longueurs d’onde de la lumière. Enfin, on peut constater que la classe des objets non-noirs peut également faire l’objet d’une définition qui ne souffre pas d’ambiguïté, à partir notamment de la taxinomie précise des couleurs qui vient d’être mentionnée.

En revanche, qu’en est-il de la classe des non-corbeaux ? Qu’est-ce qui constitue une instance d’un non-corbeau ? Intuitivement, un merle bleu, un flamand rose, un parapluie gris, voire même un entier naturel, constituent des non-corbeaux. Mais doit-on envisager une classe de référence qui aille jusqu’à inclure les objets abstraits ? Faut-il ainsi considérer une notion de non-corbeau qui englobe des entités abstraites tels que les entiers naturels et les nombres complexes ? Ou bien convient-il se limiter à une classe de référence qui n’embrasse que les animaux ? Doit-on considérer une classe de référence qui englobe tous les êtres vivants, ou bien encore toutes les choses concrètes, incluant cette fois également les artefacts ? Finalement, il en résulte que la proposition (H*) initiale est susceptible de donner lieu à plusieurs variations, qui sont les suivantes :

(H1*) Tout ce qui est non-noir parmi les corvidés est un non-corbeau

(H2*) Tout ce qui est non-noir parmi les oiseaux est un non-corbeau

(H3*) Tout ce qui est non-noir parmi les animaux est un non-corbeau

(H4*) Tout ce qui est non-noir parmi les êtres vivants est un non-corbeau

(H5*) Tout ce qui est non-noir parmi les choses concrètes est un non-corbeau

(H6*) Tout ce qui est non-noir parmi les objets concrets et abstraits est un non-corbeau

Ainsi, il apparaît que l’énoncé du paradoxe de Hempel et en particulier la proposition (H*) se trouve associée à une classe de référence, qui permet de définir les non-corbeaux. Une telle classe de référence peut s’assimiler aux corvidés, aux oiseaux, aux animaux, aux êtres vivants, aux choses concrètes, ou encore aux choses concrètes et abstraites, etc. Cependant, dans l’énoncé du paradoxe de Hempel, on ne dispose pas de critère objectif permettant d’effectuer un tel choix. À ce stade, il apparaît que l’on peut choisir une telle classe de référence de manière restrictive, par exemple en l’assimilant aux corvidés. Mais de manière aussi légitime, on peut choisir une classe de référence de manière plus extensive, par exemple en l’identifiant à l’ensemble des choses concrètes, incluant alors notamment les parapluies. Alors pourquoi choisir telle classe de référence définie de manière restrictive plutôt que telle autre définie de façon extensive ? On ne possède pas en réalité de critère pour légitimer le choix, selon que l’on procède par restriction ou par extension, de la classe de référence. Dès lors, il apparaît que celle-ci ne peut être définie que de manière arbitraire. Or le choix d’une telle classe de référence se révèle déterminant, car selon que l’on choisira telle ou telle classe de référence, un objet donné tel qu’un parapluie gris confirmera ou non (H*) et donc (H). Ainsi, si nous choisissons la classe de référence par extension, incluant ainsi l’ensemble des objets concrets, un parapluie gris confirmera (H). Cependant, si nous choisissons une telle classe de référence par restriction, en l’assimilant seulement aux corvidés, un parapluie gris ne confirmera pas (H). Une telle différence se révèle essentielle. En effet, si l’on choisit une définition extensive de la classe de référence, on a bien l’effet paradoxal inhérent au paradoxe de Hempel. Mais dans le cas contraire, si l’on opte pour une classe de référence définie de manière restrictive, on perd alors l’effet paradoxal.

Figure 4. Pôles duaux au sein de la classe de référence des non-corbeaux dans le paradoxe de Hempel

Ce qui précède permet de décrire avec précision les éléments de l’analyse qui précède du paradoxe de Hempel, en termes de biais d’uni-polarisation ainsi qu’il a été défini plus haut : au paradoxe et en particulier à la proposition (H*) se trouve associée la classe de référence des non-corbeaux, qui est elle-même susceptible d’être définie par rapport à ladualité extension/restriction. Or, pour un objet donné tel qu’un parapluie gris, la définition de la classe de référence par extension donne lieu à un effet paradoxal, alors-même que le choix de cette dernière par restriction ne conduit pas à un tel effet.

6.2. Application à l’analyse du paradoxe de l’examen-surprise

La version classique du paradoxe de l’examen-surprise (Quine, 1953 ; Sorensen, 1988) est la suivante : un professeur annonce à ses étudiants qu’un examen aura lieu la semaine prochaine, mais qu’ils ne pourront pas connaître à l’avance le jour précis où l’examen se déroulera. L’examen aura donc lieu par surprise. Les étudiants raisonnent ainsi. L’examen ne peut avoir lieu le samedi, pensent-ils, car sinon ils sauraient à l’avance que l’examen aurait lieu le samedi et donc il ne pourrait survenir par surprise. Aussi le samedi se trouve-t-il éliminé. De plus, l’examen ne peut avoir lieu le vendredi, car sinon les étudiants sauraient à l’avance que l’examen aurait lieu le vendredi et donc il ne pourrait survenir par surprise. Aussi le vendredi se trouve-t-il également éliminé. Par un raisonnement analogue, les étudiants éliminent successivement le jeudi, le mercredi, le mardi et le lundi. Finalement, ce sont tous les jours de la semaine qui sont ainsi éliminés. Toutefois, cela n’empêche pas l’examen de survenir finalement par surprise, le mercredi. Ainsi, le raisonnement des étudiants s’est avéré fallacieux. Pourtant, un tel raisonnement paraît intuitivement valide. Le paradoxe réside ici dans le fait que le raisonnement des étudiants est semble-t-il valide, alors qu’il se révèle finalement en contradiction avec les faits, à savoir que l’examen peut véritablement survenir par surprise, conformément à l’annonce faite par le professeur.

Afin de présenter l’analyse dichotomique (Franceschi, 2005) qui peut être effectuée par rapport au paradoxe de l’examen-surprise, il convient de considérer tout d’abord deux variations qui apparaissent structurellement différentes du paradoxe. Une première variation est associée à la solution au paradoxe proposée par Quine (1953). Quine considère ainsi la conclusion finale de l’étudiant selon laquelle l’examen ne peut avoir lieu par surprise aucun jour de la semaine. Selon Quine, l’erreur de l’étudiant réside dans le fait de n’avoir pas envisagé dès le début l’hypothèse selon laquelle l’examen pourrait avoir lieu le dernier jour. Car le fait de considérer précisément que l’examen n’aura pas lieu le dernier jour permet finalement à l’examen de survenir par surprise, le dernier jour. Si l’étudiant avait également pris en compte cette possibilité dès le début, il ne serait pas parvenu à la conclusion fallacieuse que l’examen ne peut pas survenir par surprise.

La seconde variation du paradoxe qui se révèle intéressante dans le présent contexte, est celle qui est associée à la remarque, effectuée par plusieurs auteurs (Hall, 1999, p. 661; Williamson, 2000), selon laquelle le paradoxe émerge nettement, lorsque le nombre n d’unités est grand. Un tel nombre est habituellement associé à un nombre n de jours, mais on peut aussi bien utiliser des heures, des minutes, des secondes, etc. Une caractéristique intéressante du paradoxe est en effet que celui-ci émerge intuitivement de manière plus nette lorsque de grandes valeurs de n sont prises en compte. Une illustration frappante de ce phénomène nous est ainsi fournie par la variation du paradoxe qui correspond à la situation suivante, décrite par Timothy Williamson (2000, p. 139) :

Advance knowledge that there will be a test, fire drill, or the like of which one will not know the time in advance is an everyday fact of social life, but one denied by a surprising proportion of early work on the Surprise Examination. Who has not waited for the telephone to ring, knowing that it will do so within a week and that one will not know a second before it rings that it will ring a second later ?

La variation décrite par Williamson correspond à l’annonce faite à quelqu’un qu’il recevra un coup de téléphone dans la semaine, sans pouvoir toutefois déterminer à l’avance à quelle seconde précise un tel événement surviendra. Cette variation souligne comment la surprise peut se manifester, de manière tout à fait plausible, lorsque la valeur de n est élevée. L’unité de temps considérée par Williamson est ici la seconde, rapportée à une période qui correspond à une semaine. La valeur correspondante de n est ici très élevée et égale à 604 800 (60 × 60 × 24 × 7) secondes. Cependant, il n’est pas indispensable de prendre en compte une valeur aussi grande de n, et une valeur de n égale par exemple à 365 convient également très bien.

Le fait que deux versions qui semblent a priori assez différentes du paradoxe coexistent, suggère que deux versions structurellement différentes du paradoxe pourraient se trouver inextricablement mêlées dans le paradoxe de l’examen-surprise. De fait, si l’on analyse la version du paradoxe qui donne lieu à la solution de Quine, on s’aperçoit qu’elle présente une particularité : elle est susceptible de se manifester pour une valeur de n égale à 1. La version correspondante de l’annonce du professeur est alors la suivante : «Un examen aura lieu demain, mais vous ne pourrez savoir à l’avance que cet examen aura lieu et par conséquent, il surviendra par surprise.» L’analyse de Quine s’applique directement à cette version du paradoxe pour laquelle n = 1. Dans ce cas, l’erreur de l’étudiant réside, selon Quine, dans le fait de n’avoir considéré que la seule hypothèse suivante : (a) «l’examen aura lieu demain et je prévoirai qu’il aura lieu». En fait, l’étudiant aurait dû considérer également trois autres cas : (b) «l’examen n’aura pas lieu demain et je prévoirai qu’il aura lieu» ; (c) «l’examen n’aura pas lieu demain et je ne prévoirai pas qu’il aura lieu» ; (d) «l’examen aura lieu demain et je ne prévoirai pas qu’il aura lieu». Et le fait de considérer l’hypothèse (a) mais également l’hypothèse (d) qui est compatible avec l’annonce du professeur aurait empêché l’étudiant de conclure que l’examen n’aurait finalement pas lieu. Par conséquent, souligne Quine, c’est le fait de n’avoir pris en considération que l’hypothèse (a) qui peut être identifié comme la cause du raisonnement fallacieux.

On le voit, la structure-même de la version du paradoxe sur laquelle est fondée la solution de Quine présente les particularités suivantes : d’une part, la non-surprise peut effectivement survenir le dernier jour, et d’autre part, l’examen peut également survenir par surprise le dernier jour. Il en va de même pour la version du paradoxe où n = 1 : la non-surprise ainsi que la surprise peuvent survenir le jour n. Ceci permet de représenter une telle structure du paradoxe sous forme de la matrice S[k, s] suivante (où k dénote le jour où l’examen a lieu et S[k, s] dénote si le cas correspondant de non-surprise (s = 0) ou de surprise (s = 1) est rendu possible (dans ce cas, S[k, s] = 1) ou non (dans ce cas, S[k, s] = 0)) :

journon-surprisesurprise
111
211
311
411
511
611
711

Structure matricielle de la version du paradoxe correspondant à la solution de Quine pour n = 7 (une semaine)

journon-surprisesurprise
111

Structure matricielle de la version du paradoxe correspondant à la solution de Quine pour n = 1 (un jour)

Compte tenu de la structure correspondante de la matrice qui admet des valeurs égales à 1 à la fois au niveau des cas de non-surprise et de surprise, pour un jour donné, nous dénommerons conjointe une telle structure de matrice.

Si l’on étudie la variation du paradoxe énoncée par Williamson et mentionnée plus haut, elle présente la particularité, à l’inverse de la variation précédente, d’émerger de manière nette lorsque n est grand. Dans ce contexte, l’annonce du professeur correspondante par exemple à une valeur de n égale à 365, est la suivante : «Un examen aura lieu dans l’année à venir mais la date de l’examen constituera une surprise». Si l’on analyse une telle variation en termes de matrice des cas de non-surprise et de surprise, il apparaît qu’une telle version du paradoxe présente les propriétés suivantes : la non-surprise ne peut survenir le 1er jour alors que la surprise est possible ce même 1er jour ; en revanche, le dernier jour, la non-surprise est possible alors que la surprise n’est pas possible.

journon-surprisesurprise
101
36510

Structure matricielle de la version du paradoxe correspondant à la variation de Williamson pour n = 365 (un an)

Ce qui précède permet maintenant d’identifier avec précision ce qui pêche dans le raisonnement de l’étudiant, lorsqu’il s’applique à cette version particulière du paradoxe. Dans ces circonstances, l’étudiant aurait alors dû raisonner de la manière suivante. La surprise ne peut se manifester le dernier jour mais peut survenir le 1er jour ; la non-surprise peut se manifester le dernier jour, mais ne peut survenir le 1er jour. Il s’agit ici d’instances propres de non-surprise et de surprise, qui se révèlent disjointes. Cependant, la notion de surprise n’est pas capturée de manière exhaustive par l’extension et l’anti-extension de la surprise. Or une telle définition est conforme à la définition d’un prédicat vague, qui se caractérise par une extension et une anti-extension mutuellement exclusives et non-exhaustives. Ainsi, la conception de la surprise associée une structure disjointe est-elle celle d’une notion vague. Aussi l’erreur à l’origine du raisonnement fallacieux de l’étudiant réside-t-elle dans l’absence de prise en compte du fait que la surprise correspond dans le cas d’une structure disjointe, à une notion vague, et comporte donc la présence d’une zone de pénombre correspondant à des cas-limites (borderline) entre la non-surprise et la surprise. Car la seule prise en compte du fait que la notion de surprise est ici une notion vague aurait interdit à l’étudiant de conclure que S[k, 1] = 0, pour toutes les valeurs de k, c’est-à-dire que l’examen ne peut survenir par surprise aucun jour de la période considérée.

Finalement, il apparaît ainsi que l’analyse conduit à distinguer au niveau du paradoxe de l’examen-surprise deux variations indépendantes. La définition matricielle des cas de non-surprise et de surprise conduit à distinguer deux variations du paradoxe, en fonction de la dualité conjoint/disjoint. Dans un premier cas, le paradoxe est basé sur une définition conjointe des cas de non-surprise et de surprise. Dans un second cas, le paradoxe se trouve fondé sur une définition disjointe. Chacune de ces deux variations conduit à une variation structurellement différente du paradoxe et à une solution indépendante. Lorsque la variation du paradoxe est basée sur une définition conjointe, la solution développée par Quine s’applique alors. En revanche, lorsque la variation, du paradoxe est fondée sur une définition disjointe, la solution retenue est fondée sur la reconnaissance préalable de la nature vague de la notion de surprise associée à cette variation du paradoxe.

Figure 5. Pôles duaux dans la classe des matrices associées au paradoxe de l’examen-surprise

On le voit finalement, l’analyse dichotomique du paradoxe de l’examen-surprise conduit à envisager la classe des matrices associées à la définition-même du paradoxe et à distinguer selon que leur structure est conjointe ou bien disjointe. Dès lors, il en résulte une solution indépendante pour chacune des deux versions structurellement différentes du paradoxe qui en résultent.

6.3. Application à l’analyse de l’Argument de l’Apocalypse

L’argument de l’Apocalypse, attribué à Brandon Carter, a été décrit par John Leslie (1993, 1996). Il convient d’en rappeler préalablement l’énoncé. Considérons la proposition (A) suivante :

(A) L’espèce humaine disparaîtra avant la fin du XXIème siècle

On peut estimer, pour fixer les idées, à une chance sur 100 la probabilité que cette disparition survienne : P(A) = 0,01. Soit également la proposition suivante :

(Ā) L’espèce humaine ne disparaîtra pas à la fin du XXIème siècle

Soit encore E l’événement : je vis durant les années 2010. On peut par ailleurs estimer aujourd’hui à 60 milliards le nombre d’humains ayant existé depuis la naissance de l’humanité. De même, la population actuelle peut être évaluée à 6 milliards. On calcule ainsi qu’un humain sur dix, si l’événement A survient, aura connu les années 2010. On évalue alors la probabilité que l’humanité soit éteinte avant la fin du XXIème siècle, si j’ai connu les années 2010 : P(E, A) = 6×109/6×1010 = 0,1. Par contre, si l’humanité passe le cap du XXIème siècle, on peut penser qu’elle sera appelée à une expansion beaucoup plus importante, et que le nombre des humains pourra s’élever par exemple à 6×1012. Dans ce cas, la probabilité que l’humanité ne soit pas éteinte à la fin du XXIème siècle, si j’ai connu les années 2010 s’évalue ainsi : P(E, Ā) = 6×109/6×1012 = 0,001. À ce stade, nous pouvons assimiler à deux urnes distinctes — l’une contenant 60 milliards de boules et l’autre en comportant 6000 milliards — les populations humaines totales qui en résultent. Ceci conduit à calculer la probabilité a posteriori de l’extinction de l’espèce humaine avant la fin du XXIème siècle, à l’aide de la formule de Bayes : P'(A) = [P(A) x P(E, A)] / [P(A) x P(E, A) + P(Ā) x P(E, Ā)] = (0,01 x 0,1) / (0,01 x 0,1 + 0,99 x 0,001) = 0,5025. Ainsi, la prise en compte du fait que je vis actuellement fait passer la probabilité de l’extinction de l’espèce humaine avant 2150 de 1 % à 50,25 %. Une telle conclusion apparaît comme contraire à l’intuition et en ce sens, paradoxale.

Il convient maintenant de s’attacher comment une analyse dichotomique (Franceschi, 1999, 2009) peut s’appliquer à l’argument de l’Apocalypse. En premier lieu, nous nous attacherons à montrer comment l’argument de l’Apocalypse comporte un problème de définition de classe de référence6 liée à une dualité A/Ā. Considérons en effet l’assertion suivante :

(A) L’espèce humaine disparaîtra avant la fin du XXIème siècle

Une telle proposition présente une connotation dramatique, apocalyptique et tragique, liée à la disparition très prochaine de l’espèce humaine. Il s’agit là d’une prédiction de nature tout à fait catastrophique et alarmante. Cependant, si on analyse une telle proposition avec soin, on est conduit à remarquer qu’elle comporte une imprécision. Si la référence temporelle elle-même — la fin du XXIème siècle — se révèle tout à fait précise, le terme d’ «espèce humaine» proprement dit apparaît comme ambigu. En effet, il s’avère qu’il existe plusieurs façons de définir cette dernière. La notion la plus précise permettant de définir l’ «espèce humaine» est notre présente taxinomie scientifique, basée sur les notions de genre, d’espèce, de sous-espèce, etc. En adaptant cette dernière taxinomie à l’assertion (A), il s’ensuit que la notion ambiguë d’ «espèce humaine» est susceptible d’être définie par rapport au genre, à l’espèce, à la sous-espèce, etc. et en particulier par rapport au genre homo, à l’espèce homo sapiens, à la sous-espèce homo sapiens sapiens, etc. Finalement, il s’ensuit que l’assertion (A) est susceptible de revêtir les formes suivantes :

(Ah) Le genre homo disparaîtra avant la fin du XXIème siècle

(Ahs) L’espèce homo sapiens disparaîtra avant la fin du XXIème siècle

(Ahss) La sous-espèce homo sapiens sapiens disparaîtra avant la fin du XXIème siècle

À ce stade, la lecture de ces différentes propositions conduit à un impact différent, eu égard à la proposition initiale (A). Car si (Ah) présente bien à l’instar de (A) une connotation tout à fait dramatique et tragique, il n’en va pas de même pour (Ahss). En effet, une telle proposition qui prévoit l’extinction de notre sous-espèce actuelle homo sapiens sapiens avant la fin du XXIème siècle, pourrait s’accompagner du remplacement de notre actuelle race humaine par une nouvelle sous-espèce plus évoluée, que l’on pourrait dénommer homo sapiens supersapiens. Dans ce cas, la proposition (Ahss) ne comporterait pas de connotation tragique, mais serait associée à une connotation positive, car le remplacement d’une race ancienne par une espèce plus évoluée constitue un processus naturel de l’évolution. Plus encore, en choisissant une classe de référence encore plus restreinte telle que celle des humains n’ayant pas connu l’ordinateur (homo sapiens sapiens antecomputeris), on obtient la proposition suivante :

(Ahsss) L’infra-sous-espèce homo sapiens sapiens antecomputeris disparaîtra avant la fin du XXIème siècle

qui ne présente plus du tout la connotation dramatique inhérente à (A) et qui se révèle même tout à fait normale et rassurante, et qui ne présente plus de caractère paradoxal ni contraire à l’intuition. Dans ce cas en effet, la disparition de l’infra-sous-espèce homo sapiens sapiens antecomputeris s’accompagne de la surviede l’infra-sous-espèce plus évoluée homo sapiens sapiens postcomputeris. Il s’avère ainsi qu’un classe de référence restreinte coïncidant avec une infra-sous-espèce est définitivement éteinte, mais qu’une classe plus étendue correspondant à une sous-espèce (homo sapiens sapiens) survit. Dans ce cas, on observe bien le décalage bayesien décrit par Leslie, mais l’effet de ce décalage se révèle cette fois tout à fait inoffensif.

Ainsi, le choix de la classe de référence pour la proposition (A) se révèle-t-il déterminant pour la nature paradoxale de la conclusion associée à l’argument de l’Apocalypse. Si l’on choisit ainsi une classe de référence étendue pour la définition-même des humains, en l’associant par exemple au genre homo, on conserve le caractère dramatique et inquiétant associé à la proposition (A). Mais si on choisit une telle classe de référence de manière restrictive, en l’associant par exemple à l’infra-sous-espèce homo sapiens sapiens antecomputeris, un contenu rassurant et normal se trouve désormais associé à la proposition (A) qui sous-tend l’argument de l’Apocalypse.

Finalement, nous sommes en mesure de replacer l’analyse qui précède dans le présent contexte. La définition-même de la classe de référence des «humains» associée à la proposition (A) inhérente à l’argument de l’Apocalypse est susceptible d’être définie selon les pôles de la dualité extension/restriction. Une analyse fondée sur un point de vue bi-polarisé conduit à constater que le choix par extension entraîne un effet paradoxal, alors-même que le choix par restriction de la classe de référence fait disparaître ce même effet paradoxal.

Figure 6. Pôles duaux au sein de la classe de référence des «humains» dans l’Argument de l’Apocalypse

L’analyse dichotomique, toutefois, en ce qui concerne l’argument de l’Apocalypse, ne se limite pas à cela. En effet, si on étudie l’argument avec soin, il apparaît qu’il recèle une autre classe de référence associée à une autre dualité. Ceci peut être mis en évidence en analysant l’argument opposé par William Eckhardt (1993, 1997) à l’argument de l’Apocalypse. Selon Eckhardt, la situation humaine correspondant à DA n’est pas analogue au modèle des deux urnes décrit par Leslie, mais plutôt à un modèle alternatif, qui peut être appelé le distributeur d’objets consécutifs (consecutive token dispenser). Le distributeur d’objets consécutifs est un dispositif qui éjecte à intervalles réguliers des boules numérotées consécutivement :

(…) suppose on each trial the consecutive token dispenser expels either 50 (early doom) or 100 (late doom) consecutively numbered tokens at the rate of one per minute.

S’appuyant sur ce modèle, Eckhardt (1997, p. 256) souligne le fait qu’il est impossible d’effectuer une sélection aléatoire, dès lorsqu’il existe de nombreux individus qui ne sont pas encore nés au sein de la classe de référence correspondante : «How is it possible in the selection of a random rank to give the appropriate weight to unborn members of the population ?». L’idée forte d’Eckhardt qui sous-tend cette objection diachronique est qu’il est impossible d’effectuer une sélection aléatoire lorsqu’il existe de nombreux membres au sein de la classe de référence qui ne sont pas encore nés. Dans une telle situation, il serait tout à fait erroné de conclure à un décalage bayesien en faveur de l’hypothèse (A). En revanche, ce que l’on peut inférer de manière rationnelle dans un tel cas, c’est que la probabilité initiale demeure inchangée.

À ce stade, il apparaît que deux modèles alternatifs pour modéliser l’analogie avec la situation humaine correspondant à l’argument de l’Apocalypse se trouvent en concurrence : d’une part le modèle à caractère synchronique (où toutes les boules sont présentes dans l’urne au moment où s’effectue le tirage) préconisé par Leslie et d’autre part, le modèle diachronique d’Eckhardt, où des boules peuvent être ajoutées dans l’urne après le tirage. La question qui se pose est la suivante : la situation humaine correspondant à l’argument de l’Apocalypse est-elle en analogie avec (a) le modèle de l’urne synchronique, ou bien avec (b) le modèle de l’urne diachronique ? Afin d’y répondre, la question suivante s’ensuit : existe-t-il un critère objectif qui permette de choisir, de manière préférentielle, entre les deux modèles concurrents ? Il apparaît que non. En effet, ni Leslie ni Eckhardt ne présentent une motivation objective qui permette de justifier le choix du modèle qu’ils préconisent, et d’écarter le modèle alternatif. Dans ces circonstances, le choix de l’un ou l’autre des deux modèles — synchronique ou diachronique — apparaît comme arbitraire. Par conséquent, il s’avère que le choix au sein de la classe des modèles associée à l’argument de l’Apocalypse est susceptible d’être défini selon les pôles de la dualité synchronique/diachronique. Et une analyse fondée sur un point de vue bi-polarisé conduit à constater que le choix du modèle synchronique conduit à un effet paradoxal, alors-même que le choix du modèle diachronique fait disparaître ce dernier effet paradoxal.

Figure 7. Pôles duaux au sein de la classe des modèles de l’Argument de l’Apocalypse

Finalement, compte tenu du fait que le problème précité concernant la classe de référence des humains et le choix dans la dualité extension/restriction qui lui est associé, ne concerne que le modèle synchronique, la structure de l’analyse dichotomique à un double niveau concernant l’argument de l’Apocalypse, peut être représentée de la manière suivante :

Figure 8. Structure de pôles duaux imbriqués Diachronie/Synchronie et Extension/Restriction pour l’Argument de l’Apocalypse

On le voit, les développements qui précèdent mettent en oeuvre la forme de contextualisme dialectique qui a été décrite plus haut, en l’appliquant à l’analyse de trois paradoxes philosophiques contemporains. Dans le paradoxe de Hempel, à la proposition (H*) se trouve associée la classe de référence des non-corbeaux, qui est elle-même susceptible d’être définie par rapport à ladualité extension/restriction. Or, pour un objet x donné tel qu’un parapluie gris, la définition de la classe de référence par extension donne lieu à un effet paradoxal, alors-même que le choix de cette dernière par restriction élimine un tel effet. En second lieu, les structures matricielles associées au paradoxe de l’examen-surprise sont analysées sous l’angle de la dualité conjoint/disjoint, mettant ainsi en évidence deux versions structurellement distinctes du paradoxe, qui admettent elles-mêmes deux résolutions indépendantes. Enfin, au niveau de l’argument de l’Apocalypse, une analyse dichotomique double met en évidence que la classe des humains est liée à la dualité extension/restriction, et que l’effet paradoxal qui est manifeste lorsque la classe de référence est définie par extension, se dissout dès lors que cette dernière est définie par restriction. En second lieu, il s’avère que la classe des modèles peut faire l’objet d’une définition selon la dualité synchronique/diachronique ; au point de vue synchronique se trouve associé un effet paradoxal, alors que ce même effet disparaît si l’on se place du point de vue diachronique.

Remerciements

Je suis très reconnaissant envers Pascal Engel à qui je dois l’inspiration de la rédaction de ce texte. Il a en effet été élaboré à partir d’éléments entièrement remaniés de mon mémoire d’habilitation à diriger les recherches, présenté en 2006, comportant notamment la correction d’une erreur conceptuelle, suivant en cela les commentaires et les recommandations que Pascal Engel m’avait faits à l’époque. Une version antérieure de ce texte a été incluse dans le Liber Amicorum dédié à Pascal Engel.


Références

Beck, Aaron, 1963, «Thinking and depression : Idiosyncratic content and cognitive distortions», Archives of General Psychiatry, vol. 9, p. 324-333.

Beck, Aaron, 1964, «Thinking and depression : Theory and therapy», Archives of General Psychiatry, vol. 10, p. 561-571.

Blair, J. Anthony, 1988, «What Is Bias ?» dans Trudy Govier dir., Selected Issues in Logic and Communication, Belmont CA, Wadsworth, p. 101-102).

Boulanger, Philippe, 2000, «Culture et nature», Pour la Science, vol. 273, p. 3.

Chalmers, David, 2002, «The St. Petersburg two-envelope paradox», Analysis, vol. 62, p. 155-157.

Eckhardt, William, 1993, «Probability Theory and the Doomsday Argument», Mind, vol. 102, p. 483-488.

Eckhardt, William, 1997, «A Shooting-Room view of Doomsday», Journal of Philosophy, vol. 94, p. 244-259.

Ellis, Albert, 1962, Reason and Emotion in Psychotherapy, New York, Lyle Stuart.

Franceschi, Paul, 1999, «Comment l’urne de Carter et Leslie se déverse dans celle de Carter», Canadian Journal of Philosophy, vol. 29, p. 139-156.

Franceschi, Paul, 2002, «Une classe de concepts», Semiotica, vol. 139 (1-4), p. 211-226.

Franceschi, Paul, 2005, «Une analyse dichotomique du paradoxe de l’examen surprise», Philosophiques, vol. 32-2, p. 399-421.

Franceschi, Paul, 2007, «Compléments pour une théorie des distorsions cognitives», Journal de Thérapie Comportementale et Cognitive,vol. 17-2, p. 84-88.

Franceschi, Paul, 2009, «A Third Route to the Doomsday Argument», Journal of Philosophical Research, vol. 34, p. 263-278.

Hall, Ned, 1999, «How to Set a Surprise Exam», Mind, vol. 108, p. 647-703.

Leslie, John, 1993, «Doom and Probabilities», Mind, vol. 102, p. 489-491.

Leslie, John, 1996, The End of the World : the science and ethics of human extinction, Londres, Routledge

Quine, Willard Van Orman, 1953, «On a So-called Paradox», Mind, vol. 62, p. 65-66.

Sorensen, Roy, 1988, Blindspots, Oxford, Clarendon Press.

Stuart Mill, John, 1985, On Liberty, Londres, Penguin Classics, original publication in 1859.

Walton, Douglas, 1997, «What is Propaganda, and What Exactly is Wrong with it», Public Affairs Quarterly, vol. 11, p. 383-413.

Walton, Douglas, 1999, One-Sided Arguments : A Dialectical Analysis of Bias, Albany, State University of New York Press.

Williamson, Timothy, 2000, Knowledge and its Limits, Londres & New York, Routledge.


1Une telle notion se trouve au coeur du concept de matrice de concepts introduit dans Franceschi (2002), dont on peut considérer qu’elle constitue le noyau, ou une forme simplifiée. Pour le présent exposé portant spécifiquement sur les éléments du contextualisme dialectique et leur application pour la résolution de paradoxes philosophiques, la présentation des pôles duaux se révèle suffisante.

2Plusieurs problèmes ouverts en résultent dans cette construction : (a) est-il possible de concevoir une liste qui soit exhaustive de telles dualités ? (b) existe-t-il une méthodologie pour produire une liste la plus exhaustive possible de ces dualités ?

3La présente construction s’applique également à des objets qui sont associés à plusieurs classes de référence. Nous nous limitons ici, dans un souci de simplification, à une seule classe de référence.

4Philippe Boulanger indique (correspondance personnelle) qu’il a entendu Stanislas Ulam développer ce point particulier lors d’une conférence à l’Université du Colorado.

5Une application de la présente construction aux distorsions cognitives, introduites par Aaron Beck (1963, 1964) dans les éléments constitutifs de la thérapie cognitive, est donnée dans Franceschi (2007). Les distorsions cognitives sont classiquement définies comme des raisonnements fallacieux jouant un rôle déterminant dans l’émergence d’un certain nombre de troubles mentaux. La thérapie cognitive en particulier se fonde sur l’identification de ces distorsions cognitives dans le raisonnement usuel du patient, et leur remplacement par des raisonnements alternatifs. Classiquement, les distorsions cognitives sont décrites comme l’un des douze modes de raisonnement irrationnel suivants : 1. Raisonnement émotionnel 2. Hyper-généralisation 3. Inférence arbitraire 4. Raisonnement dichotomique 5. Obligations injustifiées (Should statements, (Ellis 1962)) 6. Divination ou lecture mentale 7. Abstraction sélective 8. Disqualification du positif 9. Maximisation et minimisation 10. Catastrophisme 11. Personnalisation 12. Étiquetage.

6L’analyse de l’argument de l’Apocalypse du point de vue du problème de la classe de référence est effectuée de manière détaillée par Leslie (1996). Mais l’analyse de Leslie vise à montrer que le choix de la classe de référence, par extension ou par restriction, n’a pas d’incidence sur la conclusion de l’argument lui-même.

Une troisième voie pour l’argument de l’Apocalypse

Une troisième voie pour l’argument de l’Apocalypse

Paul Franceschi

Université de Corse

à paraître dans le Journal of Philosophical Research

Dans ce qui suit, je m’attacherai à présenter une solution au problème posé par l’argument de l’Apocalypse (DA, dans ce qui suit). La solution ainsi décrite constitue une troisième voie, par rapport à d’une part, l’approche qui est celle des promoteurs de DA (Leslie 1993, 1996) et d’autre part, la solution préconisée par ses détracteurs (Eckhardt 1993, 1997 ; Sowers 2002).1

1. L’argument de l’Apocalypse et le modèle de Carter-Leslie

Pour les besoins de la présente discussion, il convient tout d’abord de présenter brièvement DA. Cet argument peut être décrit comme un raisonnement qui conduit à un décalage bayesien, à partir d’une analogie entre ce qui a été dénommé l’expérience des deux urnes (two-urn case2) et la situation humaine correspondante.

Considérons tout d’abord, l’expérience des deux urnes (adapté de Bostrom 1997) :

L’expérience des deux urnes Une urne3 opaque se trouve devant vous. Vous savez qu’elle contient soit 10, soit 1000 boules numérotées. Une pièce équilibrée a en effet été lancée au temps T0 et si la pièce est tombée sur pile, alors 10 boules ont été placées dans l’urne ; en revanche, si la pièce est tombée sur face, ce sont 1000 boules qui ont été placées dans l’urne. Les boules sont numérotées 1, 2, 3, …. Vous formulez alors les hypothèses Hpeu (l’urne ne contient que 10 boules) et Hbeaucoup (l’urne contient 1000 boules) avec les probabilités initiales P(Hpeu) = P(Hbeaucoup) = 1/2.

Informé de tout ce qui précède, vous tirez au temps T1 une boule au hasard dans l’urne. Vous obtenez ainsi la boule n° 5. Vous vous attachez à estimer le nombre de boules qui étaient contenues en T0 dans l’urne. Vous concluez alors à un décalage bayesien vers le haut en faveur de l’hypothèse Hpeu.

L’expérience des deux urnes constitue une application non controversée du théorème de Bayes. Elle est basée sur les deux hypothèses concurrentes suivantes :

(H1peu)l’urne contient 10 boules
(H2beaucoup)l’urne contient 1000 boules

et les probabilités initiales correspondantes : P(H1) = P(H2) = 1/2. En prenant en compte le fait que E dénote l’élément matériel avéré selon lequel la boule tirée au hasard porte le numéro 5 et que P(E|H1) = 1/10 et P(E|H2) = 1/1000, un décalage bayesien vers le haut s’ensuit, par application directe du théorème de Bayes. Par conséquent, les probabilités a posteriori sont telles que P'(H1) = 0.99 et P'(H2) = 0.01.

Considérons, en second lieu, la situation humaine correspondant à DA. En s’intéressant au nombre total d’humains que comptera finalement l’espèce humaine, on considère les deux hypothèses concurrentes suivantes :

(H3peu)le nombre total des humains ayant jamais existé s’élèvera à 1011 (Apocalypse proche)
(H4beaucoup)le nombre total des humains ayant jamais existé s’élèvera à 1014 (Apocalypse lointaine)

Il apparaît maintenant que chaque humain possède son propre rang de naissance, et que le votre, par exemple, est environ 60×109. Supposons également, par souci de simplicité, que les probabilités a priori soient telles que P(H3) = P(H4) = 1/2. Maintenant, selon Carter et Leslie, la situation humaine correspondant à DA est analogue au modèle des deux urnes.4 Si l’on dénote par E le fait que notre rang de naissance est 60×109, une application du théorème de Bayes, en prenant en compte le fait que P(E|H3) = 1/1011 et que P(E|H4) = 1/1014, conduit à un important décalage bayesien en faveur de l’hypothèse d’une Apocalypse prochaine, soit P'(H3) = 0.999. L’importance du décalage bayesien qui résulte de ce raisonnement, associé à une situation très inquiétante quant au devenir de l’humanité, à partir de la seule prise en compte de notre rang de naissance, apparaît contraire à l’intuition. En soi, ceci constitue un problème, qui nécessite qu’on s’attache à lui trouver une solution.

Dans un tel contexte, il apparaît qu’une solution à DA se doit de présenter les caractéristiques suivantes. En premier lieu, elle doit indiquer dans quelle mesure la situation humaine correspondant à DA est analogue au modèle des deux urnes ou éventuellement, à un modèle alternatif, dont les caractéristiques sont à préciser. En second lieu, une telle solution à DA doit indiquer dans quelle mesure le ou les modèles en analogie avec la situation humaine correspondant à DA se trouvent associés à une situation effrayante pour l’avenir de l’humanité.

Dans ce qui suit, je m’attacherai à présenter une solution pour DA. Afin d’élaborer cette dernière, il sera nécessaire tout d’abord de construire l’espace des solutions de DA. Une telle construction constitue une tâche non triviale, car elle nécessite la prise en considération non seulement de plusieurs objections qui ont été soulevées contre DA, mais aussi du problème de la classe de référence. Au sein de cet espace des solutions, les solutions préconisées par les défenseurs ainsi que par les détracteurs de DA, prennent naturellement place. Je montrerai finalement qu’au sein de l’espace des solutions ainsi constitué, il y a place pour une troisième voie, qui constitue une solution par essence différente de celle offerte par les défenseurs et les détracteurs de DA.

2. Échec d’un modèle alternatif fondé sur l’objection incrémentale d’Eckhardt et al.

DA est basé sur la mise en correspondance d’un modèle probabiliste – le modèle des deux urnes – avec la situation humaine correspondant à DA. Afin de construire l’espace des solutions pour DA, il convient de s’attacher à définir les modèles qui constituent des alternatives au modèle des deux urnes, et qui peuvent également être mis en correspondance avec la situation humaine correspondant à DA. Plusieurs modèles alternatifs ont notamment été décrits par les opposants à DA. Cependant, pour des raisons qui deviendront claires un peu plus loin, tous ces modèles ne peuvent être retenus valablement en tant que modèle alternatif au modèle des deux urnes, et prendre ainsi place au sein de l’espace des solutions pour DA. Il convient ainsi de distinguer parmi ces modèles proposés par les détracteurs de DA, ceux qui ne constituent pas d’authentiques modèles alternatifs, et ceux qui peuvent légitimement être intégrés au sein de l’espace des solutions de DA.

Un certain nombre d’objections à DA ont tout d’abord été formulées par William Eckhardt (1993, 1997). Pour les besoins de la présente discussion, il convient de distinguer deux objections, parmi celles qui ont été soulevées par Eckhardt, et que j’appellerai respectivement : l’objection incrémentale et l’objection diachronique. À chacune de ces deux objections est associé une expérience qui se propose de constituer un modèle alternatif au modèle des deux urnes.

Commençons tout d’abord par l’objection incrémentale, mentionnée dans Eckhardt (1993, 1997) et le modèle alternatif qui lui est associé. Récemment, George Sowers (2002) et Elliott Sober (2003) s’en sont fait l’écho. Selon cette objection, l’analogie avec l’urne qui se trouve à l’origine de DA, est mal fondée. En effet, dans l’expérience des deux urnes, le numéro de la boule est choisi au hasard. En revanche, soulignent ces auteurs, dans le cas de la situation humaine correspondant à DA, notre rang de naissance n’est pas choisi au hasard, mais se trouve en fait indexé sur la position temporelle correspondante. Par conséquent, souligne Eckhardt, l’analogie dans le modèle des deux urnes n’est pas fondée et l’ensemble du raisonnement s’en trouve invalidé. Sober (2003) développe une argumentation similaire,5 en soulignant qu’aucun mécanisme ayant pour objet d’assigner de manière aléatoire une position temporelle aux êtres humains, ne peut être mis en évidence. Enfin, une telle objection a récemment été ravivée par Sowers. Ce dernier a mis l’accent sur le fait que le rang de naissance de chaque humain n’est pas aléatoire, car il se trouve indexé sur la position temporelle correspondante.

Selon le point de vue développé par Eckhardt et al., la situation humaine correspondant à DA n’est pas analogue à l’expérience des deux urnes, mais plutôt à un modèle alternatif, qui peut être appelé le distributeur d’objets consécutifs (consecutive token dispenser). Le distributeur d’objets consécutifs est un dispositif, décrit à l’origine par Eckhardt,6 qui éjecte à intervalles réguliers des boules numérotées consécutivement : “(…) suppose on each trial the consecutive token dispenser expels either 50 (early doom) or 100 (late doom) consecutively numbered tokens at the rate of one per minute”. Un dispositif similaire – appelons-le le distributeur de boules numérotées – est également mentionné par Sowers, où les boules sont éjectées de l’urne et numérotées selon l’ordre de leur éjection, à l’intervalle régulier d’une par minute :7

There are two urns populated with balls as before, but now the balls are not numbered. Suppose you obtain your sample with the following procedure. You are equipped with a stopwatch and a marker. You first choose one of the urns as your subject. It doesn’t matter which urn is chosen. You start the stopwatch. Each minute you reach into the urn and withdraw a ball. The first ball withdrawn you mark with the number one and set aside. The second ball you mark with the number two. In general, the nth ball withdrawn you mark with the number n. After an arbitrary amount of time has elapsed, you stop the watch and the experiment. In parallel with the original scenario, suppose the last ball withdrawn is marked with a seven. Will there be a probability shift? An examination of the relative likelihoods reveals no.

Ainsi, en vertu du point de vue défendu par Eckhardt et al., la situation humaine correspondant à DA n’est pas en analogie avec l’expérience des deux urnes, mais bien avec le distributeur de boules numérotées. Et ce dernier modèle conduit à laisser inchangées les probabilités initiales.

L’objection incrémentale d’Eckhardt et al. se trouve basée sur une disanalogie. En effet, la situation humaine correspondant à DA présente une nature temporelle, car les rangs de naissance sont successivement attribués aux humains en fonction de la position temporelle correspondant à leur apparition sur Terre. Ainsi, la situation correspondante prend place, par exemple, de T1 à Tn, où 1 et n sont respectivement les rang de naissance du premier et du dernier humain. En revanche, l’expérience des deux urnes se révèle atemporelle, car au moment où la boule est tirée au hasard, toutes les boules sont déjà présentes dans l’urne. L’expérience des deux urnes prend ainsi place à un moment donné T0. Il apparaît ainsi que l’expérience des deux urnes consiste en un modèle atemporel, alors que la situation correspondant à DA correspond à un modèle temporel. Et ceci interdit, soulignent Eckhardt et al., de considérer la situation correspondant à DA et l’expérience des deuxurnes comme isomorphes.8

À ce stade, il s’avère que la disanalogie atemporelle-temporelle constitue bien une réalité et qu’elle ne peut être niée. Toutefois, ceci ne constitue pas un obstacle insurmontable pour DA. On le verra en effet, il est possible de mettre en analogie la situation humaine correspondant à DA, avec une variation temporelle du modèle des deux urnes. Il suffit pour cela de considérer l’expérience suivante, que l’on peut dénommer l’expérience des deux urnes incrémentale (formellement, l’expérience des deux urnes++) :

L’expérience des deux urnes++ Une urne opaque se trouve devant vous. Vous savez qu’elle contient soit 10, soit 1000 boules numérotées. Une pièce équilibrée a en effet été lancée au temps T0 et si la pièce est tombée sur pile, alors l’urne ne contient que 10 boules ; en revanche, si la pièce est tombée sur face, l’urne contient ces mêmes 10 boules plus 990 boules supplémentaires, soient 1000 boules au total. Les boules sont numérotées 1, 2, 3, …. Vous formulez alors les hypothèses Hpeu (l’urne ne contient que 10 boules) et Hbeaucoup (l’urne contient 1000 boules) avec les probabilités initiales P(Hpeu) = P(Hbeaucoup) = 1/2. Au temps T1, un dispositif tirera dans l’urne une boule au hasard, puis expulsera à chaque seconde une boule numérotée dans l’ordre croissant, de la boule n° 1 jusqu’au numéro de la boule tirée au hasard. À ce moment précis, le dispositif s’arrêtera.

Vous êtes informé de tout ce qui précède, et le dispositif expulse alors la boule n° 1 en T1, la boule n° 2 en T2, la boule n° 3 en T3, la boule n° 4 en T4, puis la boule n° 5 en T5. Le dispositif s’arrête alors. Vous vous attachez à estimer le nombre de boules qui étaient contenues en T0 dans l’urne. Vous concluez alors à un décalage bayesien vers le haut en faveur de l’hypothèse Hpeu.

On le voit, une telle variation constitue une adaptation simple du modèle des deux urnes original, avec l’ajout d’un mécanisme incrémental pour l’expulsion des boules. La nouveauté avec cette variation9 réside dans le fait que l’expérience présente maintenant un aspect temporel, puisque la sélection aléatoire est effectuée en T1 et que la boule tirée au hasard est finalement éjectée, par exemple, en T5.

À ce stade, il convient également d’analyser les conséquences de l’expérience des deux urnes++ sur l’analyse développée par Eckhardt et al. En effet, dans l’expérience des deux urnes++, le numéro de chacune des boules éjectées du dispositif est indexé sur le rang de leur expulsion. Par exemple, je tire la boule n°60000000000. Mais je sais également que la boule précédente était la boule n°59999999999 et que l’avant-dernière boule était la boule n°59999999998, etc. Cependant, cela ne m’empêche pas de raisonner de la même manière que dans l’expérience des deux urnes originale et de conclure à un décalage bayesien en faveur de l’hypothèse Hpeu. Dans ce contexte, l’expérience des deux urnes++ conduit à la conséquence suivante : le fait d’être indexé par rapport au temps n’implique pas que le numéro de la boule ne soit pas choisi de manière aléatoire. Ceci peut maintenant être confronté avec la thèse principale de l’objection incrémentale développée par Eckhardt et al., selon laquelle le rang de naissance de chaque humain n’est pas choisi de manière aléatoire, mais se révèle indexé sur la position temporelle correspondante. Sowers en particulier considère que la cause de DA réside dans le fait que le numéro correspondant au rang de naissance se trouve indexé par rapport au temps.10 Mais ce que l’expérience des deux urnes++ et l’analogie correspondante démontrent, c’est que notre rang de naissance peut être indexé par rapport au temps et se trouver néanmoins déterminé de manière aléatoire dans le contexte qui est celui de DA. Pour cette raison, le modèle du distributeur de boules numérotées proposé par Eckhardt et Sowers ne peut pas être pris en considération en tant que modèle alternatif au modèle des deux urnes, au sein de l’espace des solutions de DA.

3. Succès d’un modèle alternatif fondé sur l’objection diachronique de William Eckhardt

William Eckhardt (1993, 1997) expose également une autre objection à DA, que nous appellerons, pour les besoins de la présente discussion, l’objection diachronique. Cette dernière objection, on le verra, est basée sur un modèle alternatif à l’expérience des deux urnes, qui est différent de celui qui correspond à l’objection incrémentale. Eckhardt (1997, p. 256) souligne ainsi le fait qu’il est impossible d’effectuer une sélection aléatoire, dès lorsqu’il existe de nombreux individus qui ne sont pas encore nés au sein de la classe de référence correspondante : “How is it possible in the selection of a random rank to give the appropriate weight to unborn members of the population?”.

Cette seconde objection est potentiellement plus forte que l’objection incrémentale. Afin d’en évaluer la portée précise, il convient maintenant de la traduire en termes de modèle. Il apparaît que le modèle associé à l’objection diachronique d’Eckhardt peut être construit, à partir de la structure du modèle des urnes. La version correspondante, qui peut être dénommée l’expérience des deux urnes diachronique, est la suivante :

L’expérience des deux urnes diachronique Une urne opaque se trouve devant vous. Vous savez qu’elle contient soit 10, soit 1000 boules numérotées. Une pièce équilibrée a en effet été lancée au temps T0. Si la pièce est tombée sur pile, 10 boules ont alors été placées dans l’urne ; en revanche, si la pièce est tombée sur face, 10 boules ont également été placées dans l’urne au temps T0, mais 990 boules supplémentaires seront ensuite ajoutées dans l’urne au temps T2, portant ainsi le nombre total de boules finalement contenues dans l’urne à 1000. Les boules sont numérotées 1, 2, 3, …. Vous formulez alors les hypothèses Hpeu (l’urne ne contient finalement que 10 boules) et Hbeaucoup (l’urne contient finalement 1000 boules) avec les probabilités initiales P(Hpeu) = P(Hbeaucoup) = 1/2.

Informé de tout ce qui précède, vous tirez au temps T1 une boule au hasard dans l’urne. Vous obtenez ainsi la boule n° 5. Vous vous attachez à estimer le nombre de boules qui seront finalement contenues dans l’urne en T2. Vous concluez alors que les probabilités initiales demeurent inchangées.

À ce stade, il apparaît que le protocole qui vient d’être décrit rend justice à l’idée forte d’Eckhardt selon laquelle il est impossible d’effectuer une sélection aléatoire lorsqu’il existe de nombreux membres au sein de la classe de référence qui ne sont pas encore nés. Dans le modèle des deux urnes diachronique, les 990 boules qui sont éventuellement (si la pièce tombe sur face) ajoutées en T2 représentent en effet ces membres non encore nés. Dans une telle situation, il serait tout à fait erroné de conclure à un décalage bayesien en faveur de l’hypothèse Hpeu. En revanche, ce que l’on peut inférer de manière rationnelle dans un tel cas, c’est que les probabilités initiales demeurent inchangées.

On peut constater en outre que la structure du protocole de l’expérience des deux urnes diachronique se révèle tout à fait similaire à celui de l’expérience des deux urnes originale (que nous appellerons désormais l’expérience des deux urnes synchronique). Ceci permet désormais d’effectuer aisément des comparaisons. On constate ainsi que si la pièce tombe sur pile : la situation est identique dans les deux expériences, synchronique et diachronique. En revanche, la situation est différente si la pièce tombe sur face : dans le modèle des deux urnes synchronique, les 990 boules supplémentaires sont déjà présentes dans l’urne en T0 ; à l’inverse, dans le modèle des deux urnes diachronique, les 990 boules supplémentaires sont ajoutées dans l’urne ultérieurement, c’est-à-dire en T2. On le voit ainsi, le modèle des deux urnes diachronique fondé sur l’objection diachronique d’Eckhardt mérite tout à fait de prendre sa place au sein de l’espace des solutions de DA.

4. Construction de l’espace des solutions préliminaire

Compte tenu de ce qui précède, nous sommes maintenant en position d’apprécier à quel point l’analogie qui sous-tend DA se révèle adéquate. Il apparaît en effet que deux modèles alternatifs pour modéliser l’analogie avec la situation humaine correspondant à DA se trouvent en concurrence : d’une part le modèle des deux urnes synchronique préconisé par les promoteurs de DA et d’autre part, le modèle des deux urnes diachronique, fondé sur l’objection diachronique d’Eckhardt. Il s’avère que ces deux modèles présentent une structure commune, ce qui permet ainsi d’effectuer des comparaisons11.

À ce stade, la question qui se pose est la suivante : la situation humaine correspondant à DA est-elle en analogie avec (a) le modèle des deux urnes synchronique, ou bien à (b) le modèle des deux urnes diachronique ? Afin d’y répondre, la question suivante s’ensuit : existe-t-il un critère objectif qui permette de choisir, de manière préférentielle, entre les deux modèles concurrents ? Il apparaît que non. En effet, ni Leslie ni Eckhardt ne présentent une motivation objective qui permette de justifier le choix du modèle qu’ils préconisent, et d’écarter le modèle alternatif. Leslie tout d’abord, défend l’analogie de la situation humaine correspondant à DA avec l’expérience de la loterie (ici, l’expérience des deux urnes synchronique). Mais parallèlement, Leslie reconnaît que DA est considérablement affaibli si notre univers est d’une nature indéterministe, c’est-à-dire si le nombre total d’humains qui existeront n’est pas encore fixé.12 Or il s’avère qu’une telle situation indéterministe correspond tout à fait au modèle des deux urnes diachronique. Car le protocole de cette expérience prend en compte le fait que le nombre total de boules qui seront finalement contenues dans l’urne, n’est pas connu au moment où le tirage aléatoire est effectué. On le voit finalement, Leslie accepte libéralement que l’analogie avec le modèle des deux urnes synchronique puisse ne pas prévaloir dans certaines circonstances indéterministes, où comme on l’a vu, ce serait alors le modèle des deux urnes diachronique qui s’appliquerait.

Parallèlement, une faiblesse dans le point de vue défendu par Eckhardt réside dans le fait qu’il rejette l’analogie avec l’expérience de la loterie (ici, l’expérience des deux urnes synchronique) dans tous les cas. Mais comment peut-on avoir la certitude qu’une analogie avec le modèle des deux urnes synchronique ne prévaut pas, au moins pour une situation particulière donnée ? Il apparaît ici que les éléments probants qui permettent d’écarter une telle hypothèse avec une certitude absolue, font défaut.

Résumons maintenant. Au sein de l’espace des solutions pour DA qui résulte de ce qui précède, il s’ensuit désormais que deux modèles concurrents peuvent convenir également pour modéliser la situation humaine correspondant à DA : le modèle des deux urnes synchronique de Leslie ou le modèle des deux urnes diachronique d’Eckhardt. À ce stade toutefois, il apparaît qu’aucun critère objectif ne permet à ce stade d’accorder la préférence à l’un ou l’autre de ces deux modèles. Dans ces circonstances, en l’absence d’éléments objectifs permettant d’effectuer un choix entre les deux modèles concurrents, nous sommes conduits à appliquer un principe d’indifférence, qui conduit à retenir les deux modèles comme globalement équiprobables. Nous attribuons ainsi (Figure 1), en vertu d’un principe d’indifférence, une probabilité P de 1/2 à l’analogie avec le modèle des deux urnes synchronique (associé à un scénario terrifiant), et une probabilité identique de 1/2 à l’analogie avec le modèle des deux urnes diachronique (associé à un scénario rassurant).

CasModèleT0T2PNature du scénario
1modèle des deux urnes synchronique1/2terrifiant
2modèle des deux urnes diachronique1/2rassurant

Figure 1.

Une telle approche revêt toutefois un caractère préliminaire, car afin d’attribuer une probabilité précise à chacune des situations inhérentes à DA, il est nécessaire de prendre en considération l’ensemble des éléments qui sous-tendent DA. Or il apparaît qu’un élément essentiel de DA n’a pas encore été pris en compte. Il s’agit du délicat problème de la classe de référence.

5. Le problème de la classe de référence

Commençons tout d’abord par rappeler le problème de la classe de référence (reference class problem).13 Sommairement, il s’agit du problème de la définition correcte des “humains”. De manière plus précise, le problème peut être ainsi énoncé : comment la classe de référence peut-elle être objectivement définie dans le contexte de DA ? Car une définition plus ou moins extensive ou restrictive de la classe de référence peut être utilisée. Une classe de référence définie de manière extensive inclurait par exemple des variétés quelque peu exotiques correspondant à des évolutions futures de notre humanité, possédant par exemple un quotient intellectuel moyen égal à 200, un double cerveau ou bien des capacités pour la causalité rétrograde. À l’inverse, une classe de référence définie de manière restrictive n’inclurait que les humains dont les caractéristiques sont très exactement celles de – par exemple – notre sous-espèce homo sapiens sapiens. Une telle définition exclurait ainsi l’espèce éteinte homo sapiens neandertalensis, de même qu’une éventuelle future sous-espèce telle qu’homo sapiens supersapiens. Pour mettre cela en adéquation avec notre actuelle taxonomie, la classe de référence peut être définie à différents niveaux qui correspondent respectivement au super-genre superhomo, au genre homo, à l’espèce homo sapiens, à la sous-espèce homo sapiens sapiens, etc. À ce stade, il apparaît qu’un critère objectif permettant de choisir le niveau correspondant d’une manière qui ne soit pas arbitraire, fait défaut.

La solution proposée par Leslie’s au problème de la classe de référence, exposée dans la réponse faite à Eckhardt (1993) et dans The End of the World (1996), est la suivante : on peut choisir la classe de référence plus ou moins comme on le souhaite, c’est-à-dire à n’importe quel niveau d’extension ou de restriction. Une fois ce choix effectué, il suffit d’ajuster en conséquence les probabilités initiales, et DA fonctionne à nouveau. La seule réserve énoncée par Leslie est que la classe de référence ne doit pas être choisie à un niveau extrême d’extension ou de restriction.14 Pour Leslie, le fait que chaque humain puisse appartenir à différentes classes, selon qu’elles sont définies de manière restrictive ou extensive, ne constitue pas un problème, puisque l’argument fonctionne pour chacune de ces classes. Dans ce cas, indique Leslie, un décalage bayesien s’ensuit quelque soit la classe de référence, choisie à un niveau raisonnable d’extension ou de restriction. Et Leslie illustre ce point de vue par une analogie avec une urne multicolore, à la différence de l’urne unicolore de l’expérience des deux urnes originale. Il considère ainsi une urne qui contient des boules de différentes couleurs, par exemple rouges et vertes. Une boule rouge est tirée au hasard dans l’urne. D’un point de vue restrictif, la boule constitue une boule rouge et il n’y a alors pas de différence avec le modèle des deux urnes. Mais d’un point de vue plus extensif, la boule constitue aussi une boule rouge ou verte.15 Selon Leslie, bien que les probabilités initiales soient différentes dans chaque cas, un décalage bayesien s’ensuit dans les deux cas.16 On le voit, le modèle des deux urnes synchronique peut aisément être adapté pour restituer l’essence du modèle multicolore de Leslie. Il suffit en effet de remplacer les boules rouges de l’expérience des deux urnes synchronique originale, par des boules rouges ou vertes. Le modèle bicolore qui en résulte est alors en tous points identique à l’expérience des deux urnes synchronique originale, et conduit à un décalage bayesien de même nature.

À ce stade, afin d’intégrer adéquatement le problème de la classe de référence au sein de l’espace des solutions pour DA, il reste encore à traduire le modèle des deux urnes diachronique en une version bicolore.

5.1 Le modèle des deux urnes diachronique bicolore

Dans l’expérience unicolore originale qui correspond au modèle des deux urnes diachronique, la classe de référence est celle des boules rouges. Il apparaît ici que l’on peut construire une variation bicolore, adaptée au traitement du problème de la classe de référence, où la classe pertinente est celle des boules rouges ou vertes. La variation bicolore correspondante est alors en tous points identique à l’expérience des deux urnes diachronique originale, à la seule différence que les 10 premières boules (1 à 10) sont rouges et que les 990 autres boules (11 à 1000) sont vertes. La variation correspondante est ainsi la suivante :

L’expérience des deux urnes diachronique bicolore Une urne opaque se trouve devant vous. Vous savez qu’elle contient soit 10, soit 1000 boules numérotées (consistant en 10 boules rouges et 990 boules vertes). Les boules rouges sont numérotées 1, 2, …, 9, 10 et les boules vertes 11, 12, .., 999, 1000. Une pièce équilibrée a en effet été lancée au temps T0. Si la pièce est tombée sur pile, 10 boules ont alors été placées dans l’urne ; en revanche, si la pièce est tombée sur face, 10 boules rouges ont également placées dans l’urne au temps T0, mais 990 boules vertes supplémentaires seront ensuite ajoutées dans l’urne au temps T2, portant ainsi le nombre total de boules contenues dans l’urne à 1000. Vous formulez alors les hypothèses Hpeu (l’urne ne contient finalement que 10 boules rouges ou vertes) et Hbeaucoup (l’urne contient finalement 1000 boules rouges ou vertes) avec les probabilités initiales P(Hpeu) = P(Hbeaucoup) = 1/2.

Informé de tout ce qui précède, vous tirez au temps T1 une boule au hasard dans l’urne. Vous obtenez ainsi la boule rouge n° 5. Vous vous attachez à estimer le nombre de boules rouges ou vertes qui seront finalement contenues dans l’urne en T2. Vous concluez alors que les probabilités initiales demeurent inchangées.

On le voit, la structure de cette variation bicolore est en tous points analogue à celle de la version unicolore de l’expérience des deux urnes diachronique. On considère en effet ici la classe des boules rouges ou vertes, en lieu et place de la classe des boules rouges originale. Et dans ce type de situation, il est rationnel de conclure de la même manière que dans la version unicolore originale de l’expérience des deux urnes diachronique que les probabilités initiales demeurent inchangées.

5.2 Non-exclusivité du modèle synchronique unicolore et du modèle diachronique bicolore

À l’aide des outils permettant d’appréhender le problème de la classe de référence, nous sommes désormais en mesure d’achever la construction de l’espace des solutions pour DA, en intégrant les éléments qui viennent d’être décrits. De manière préliminaire, nous avons attribué une probabilité de 1/2 à chacun des modèles des deux urnes unicolores -synchroniqueetdiachronique – en leur associant respectivement un scénario terrifiant et rassurant. Qu’en est-il désormais, compte tenu de la présence de modèles bicolores, permettant désormais d’appréhender le problème lié à la classe de référence ?

Avant d’évaluer l’impact du modèle bicolore sur l’espace des solutions de DA, il convient tout d’abord de définir comment s’effectue la mise en correspondance des modèles bicolores avec notre situation humaine actuelle. Pour cela, il suffit d’assimiler la classe des boules rouges à notre sous-espèce actuelle homo sapiens sapiens et la classe des boules rouges ou vertes à notre actuelle espèce homo sapiens. De même, on assimilera la classe des boules vertes à la sous-espèce homo sapiens supersapiens, une sous-espèce plus avancée que la notre, qui correspond à une évolution d’homo sapiens sapiens. Une situation de ce type se révèle très courante dans le processus évolutionnel qui régit les espèces. Compte tenu de ces éléments, nous sommes désormais en mesure d’établir la mise en relation des modèles probabilistes avec notre situation actuelle.

À ce stade, il convient de noter une importante propriété du modèle diachronique bicolore. En effet, il s’avère que ce dernier modèle est susceptible de se combiner avec un modèle des deux urnes synchronique unicolore. Supposons en effet qu’un modèle des deux urnes synchronique unicolore prévale : 10 boules ou 1000 boules rouges sont placées dans l’urne en T0. Mais cela n’exclut pas que des boules vertes soient également ajoutées dans l’urne en T2. Il apparaît ainsi que le modèle synchronique unicolore et le modèle diachronique bicolore ne sont pas exclusifs l’un de l’autre. Car dans une telle situation, un modèle des deux urnes synchronique unicolore prévaut pour la classe restreinte des boules rouges, tandis qu’un modèle diachronique bicolore s’applique à la classe étendue des boules rouges ou vertes. À ce stade, il apparaît que nous nous trouvons sur une troisième voie, d’essence pluraliste. Car le fait de mettre en correspondance la situation humaine correspondant à DA avec le modèle synchronique ou bien (de manière exclusive) le modèle diachronique, constituent bien des attitudes monistes. À l’inverse, le fait de reconnaître le rôle conjoint joué par chacun des modèles synchronique et diachronique, constitue l’expression d’un point de vue pluraliste. Dans ces circonstances, il s’avère nécessaire d’analyser l’impact sur l’espace des solutions de DA de la propriété de non-exclusivité qui vient d’être soulignée.

Compte tenu de ce qui précède, il apparaît que quatre types de situations doivent désormais être distingués, au sein de l’espace des solutions de DA. En effet, chacun des deux modèles unicolores initiaux – synchronique et diachronique – peut être associé à un modèle des deux urnes diachronique bicolore. Commençons ainsi par le cas (1) où le modèle synchronique unicolore s’applique. Dans ce cas, on est amené à distinguer deux types de situations : soit (1a) rien ne se passe en T2 et aucune boule verte n’est ajoutée dans l’urne en T2 ; soit (1b) 990 boules vertes sont ajoutées dans l’urne en T2. Dans le premier cas (1a) où aucune boule verte n’est ajoutée dans l’urne en T2, on a bien une disparition rapide de la classe des boules rouges. De même, on a une disparition corrélative de la classe des boules rouges ou vertes, puisqu’elle s’identifie ici avec la classe des boules rouges. Dans un tel cas, l’extinction rapide d’homo sapiens sapiens (les boules rouges) n’est pas suivie par l’apparition d’homo sapiens supersapiens (les boules vertes). Dans un tel cas, on observe l’extinction rapide de la sous-espèce homo sapiens sapiens et l’extinction corrélative de l’espèce homo sapiens (les boules rouges ou vertes). Un tel scénario, on doit le reconnaître, correspond à une forme d’Apocalypse qui présente un caractère tout à fait effrayant.

Considérons maintenant le second cas (1b) où nous sommes toujours en présence d’un modèle synchronique unicolore, mais où cette fois, des boules vertes sont également ajoutées dans l’urne en T2. Dans ce cas, 990 boules vertes s’ajoutent en T2 aux boules rouges initialement placées dans l’urne en T0. On a alors une disparition rapide de la classe des boules rouges, mais qui s’accompagne de la survivance de la classe des boules rouges ou vertes, compte tenu de la présence des boules vertes en T2. Dans ce cas (1b), on constate qu’un modèle synchronique unicolore se trouve combiné avec un modèle diachronique bicolore. Les deux modèles se révèlent ainsi compatibles, et non-exclusifs l’un de l’autre. Si l’on traduit cela en termes de troisième voie, on constate, en conformité avec l’essence pluraliste de cette dernière, que le modèle synchronique unicolore s’applique à la classe, restrictivement définie, des boules rouges, alors qu’un modèle diachronique bicolore s’applique également à la classe, définie de manière extensive, des boules rouges ou vertes. Dans ce cas (1b), l’extinction rapide d’homo sapiens sapiens (les boules rouges) est suivie par l’apparition de la sous-espèce humaine plus évoluée homo sapiens supersapiens (les boules vertes). Dans une telle situation, la classe restreinte homo sapiens sapiens se trouve éteinte, alors que la classe plus étendue homo sapiens (les boules rouges ou vertes) survit. Alors que le modèle synchronique unicolore s’applique à la classe restreinte homo sapiens sapiens, le modèle diachronique bicolore prévaut pour la classe plus étendue homo sapiens. Mais une telle caractéristique ambivalente a pour effet de priver l’argument original de la terreur qui est initialement associée avec le modèle synchronique unicolore. Et finalement, cela a pour effet de rendre DA inoffensif, en le privant de sa terreur originelle. En même temps, ceci laisse le champ à l’argument pour s’appliquer à une classe de référence donnée, mais sans ses conséquences effrayantes et contraires à l’intuition.

Dans le cas (1) on le voit, le traitement correspondant du problème de la classe de référence se révèle différent de celui préconisé par Leslie. Car Leslie considère que le modèle synchronique s’applique quelle que soit la classe de référence choisie. Mais la présente analyse conduit à un traitement différencié du problème de la classe de référence. Dans le cas (1a), le modèle synchronique prévaut et un décalage bayesien s’applique, de même que dans le traitement de Leslie, à la fois à la classe des boules rouges et à celle des boules rouges ou vertes. En revanche, dans le cas (1b), la situation est différente. Car si un modèle synchronique unicolore s’applique bien à la classe de référence restreinte des boules rouges et conduit à un décalage bayesien, il apparaît qu’un modèle diachronique bicolore s’applique alors à la classe de référence étendue des boules rouges ou vertes, qui conduit à laisser les probabilités initiales inchangées. Dans ce cas (1b), on le voit, la troisième voie conduit à un traitement pluraliste du problème de la classe de référence.

Envisageons maintenant la seconde hypothèse (2) où c’est le modèle diachronique unicolore qui prévaut. Dans ce cas, 10 boules rouges sont placées dans l’urne en T0, puis 990 autres boules rouges sont ajoutées dans l’urne en T2. De même que précédemment, on est conduit à distinguer deux hypothèses. Soit (2a) aucune boule verte n’est ajoutée dans l’urne en T2 ; soit (2b) 990 boules vertes sont également ajoutées à l’urne en T2. Dans le premier cas (2a), le modèle diachronique unicolore s’applique. Dans une telle situation (2a), aucune apparition d’une sous-espèce humaine plus évoluée telle qu’homo sapiens supersapiens ne se produit. Mais le scénario correspondant à un tel cas se révèle également tout à fait rassurant, puisque notre sous-espèce homo sapiens sapiens survit. Dans le second cas (2b), où 990 boules vertes sont ajoutées dans l’urne en T2, un modèle diachronique bicolore s’ajoute au modèle diachronique unicolore initial. Dans une telle hypothèse (2b), il s’ensuit l’apparition de la sous-espèce plus évoluée homo sapiens supersapiens. Dans ce cas, le scénario correspondant se révèle doublement rassurant, puisqu’il conduit à la fois à la survivance d’homo sapiens sapiens et à celle d’homo sapiens supersapiens. On le voit, dans le cas (2), c’est le modèle diachronique qui demeure le modèle fondamental, conduisant à laisser les probabilités initiales inchangées.

À ce stade, nous sommes en mesure d’achever la construction de l’espace des solutions pour DA. En effet, une nouvelle application du principe d’indifférence conduit ici à attribuer une probabilité de 1/4 à chacun des 4 sous-cas : (1a), (1b), (2a), (2b). Ces derniers se trouvent représentés sur la figure ci-dessous :

CasT0T2P
11a1/4
1b1/4
22a1/4
2b● ○1/4

Figure 2.

Il suffit désormais de déterminer la nature du scénario qui est associé à chacun des quatre sous-cas qui viennent d’être décrits. Ainsi que cela a été discuté plus haut, un scénario inquiétant est associé à l’hypothèse (1a), alors qu’un scénario rassurant est associé aux hypothèses (1b), (2a) et (2b) :

CasT0T2PNature du scénarioP
11a1/4terrifiant1/4
1b1/4rassurant
22a1/4rassurant3/4
2b● ○1/4rassurant

Figure 3.

On le voit finalement, les considérations qui précèdent conduisent à une nouvelle formulation de DA. Car il résulte des développements précédents que la portée initiale de DA doit être réduite, dans deux directions différentes. En premier lieu, il convient de reconnaître que soit le modèle synchronique unicolore, soit le modèle diachronique unicolore s’applique à notre sous-espèce homo sapiens sapiens. Un principe d’indifférence conduit alors à attribuer une probabilité de 1/2 à chacune de ces deux hypothèses. Il en résulte un premier affaiblissement de DA, puisque le décalage bayesien associé à une hypothèse terrifiante ne concerne plus qu’un scénario sur deux. Un deuxième affaiblissement de DA résulte ensuite du traitement pluraliste du problème de la classe de référence. Car dans l’hypothèse où le modèle synchronique unicolore (1) s’applique à notre sous-espèce homo sapiens sapiens, deux situations différentes doivent être distinguées. L’une d’entre elles seulement (1a) conduit à la fois à la disparition d’homo sapiens sapiens et d’homo sapiens et correspond ainsi à une Apocalypse effrayante. En revanche, l’autre situation (1b) conduit à la disparition d’homo sapiens sapiens mais à la survivance de la sous-espèce humaine plus évoluée homo sapiens supersapiens, et constitue alors un scénario tout à fait rassurant. À ce stade, une seconde application du principe d’indifférence entraîne l’attribution d’une probabilité de 1/2 à chacun de ces deux sous-cas (cf. Figure 3). Au total, un scénario effrayant n’est plus associé désormais qu’avec une probabilité de 1/4, alors qu’un scénario rassurant se trouve associé avec une probabilité de 3/4.

On le voit, étant donné ces deux mouvements de recul, il en résulte une nouvelle formulation de DA, qui pourrait se révéler plus consensuelle que dans sa forme originale. En effet, la présente formulation de DA peut maintenant être réconciliée avec nos intuitions pré-théoriques. Car le fait de prendre en compte DA donne désormais une probabilité de 3/4 pour l’ensemble des scénarios rassurants et une probabilité qui n’est plus que de 1/4 pour un scénario associé à une Apocalypse effrayante. Bien sûr, nous n’avons pas fait complètement disparaître le risque d’une Apocalypse effrayante. Et nous devons, à ce stade, accepter un certain risque, dont la portée se révèle toutefois limitée. Mais surtout, il n’est plus nécessaire désormais de renoncer à nos intuitions pré-théoriques.

Finalement, ce qui précède met en lumière une facette essentielle de DA. Car dans un sens étroit, il s’agit d’un argument qui concerne le destin de l’humanité. Et dans un sens plus large (celui qui nous a concerné jusqu’ici) il met en avant la difficulté d’appliquer des modèles probabilistes aux situations de la vie courante,17 une difficulté qui est le plus souvent largement sous-estimée. Ceci ouvre la voie à un champ entier qui présente un réel intérêt pratique, consistant en une taxonomie de modèles probabilistes, dont l’importance philosophique serait demeurée cachée, sans la défense forte et courageuse de l’argument de l’Apocalypse effectuée par John Leslie.18


Références

Bostrom, N. (1997) ‘Investigations into the Doomsday argument, pré-publication à http://www.anthropic-principle.com/preprints/inv/investigations.html

Bostrom, N. (2002) Anthropic Bias: Observation Selection Effects in Science and Philosophy, New York: Routledge

Chambers, T. (2001) ‘Do Doomsday’s Proponents Think We Were Born Yesterday?’, Philosophy, 76, 443-50

Delahaye, J-P. (1996) ‘Recherche de modèles pour l’argument de l’apocalypse de Carter-Leslie’, manuscrit

Eckhardt, W. (1993) ‘Probability Theory and the Doomsday Argument’, Mind, 102, 483-88

Eckhardt, W. (1997) ‘A Shooting-Room view of Doomsday’, Journal of Philosophy, 94, 244-259

Franceschi, P. (1998) ‘Une solution pour l’Argument de l’Apocalypse’, Canadian Journal of Philosophy, 28, 227-46

Franceschi, P. (1999) ‘Comment l’urne de Carter et Leslie se déverse dans celle de Hempel’, Canadian Journal of Philosophy, 29, 139-56, traduction anglaise sous le titre ‘The Doomsday Argument and Hempel’s Problem’, http://cogprints.org/2172/

Franceschi, P. (2002) Une application des n-univers à l’Argument de l’Apocalypse et au paradoxe de Goodman, Corté: Université de Corse, dissertation doctorale, http://www.univ-corse.fr/~franceschi/Une%20application%20des%20n-univers.pdf

Hájek, A. (2002) ‘Interpretations of Probability’, The Stanford Encyclopedia of Philosophy, E. N. Zalta (ed.), http://plato.stanford.edu/archives/win2002/entries/probability-interpret

Korb, K. & Oliver, J. (1998) ‘A Refutation of the Doomsday Argument’, Mind, 107, 403-10

Leslie, J. (1993) ‘Doom and Probabilities’, Mind, 102, 489-91

Leslie, J. (1996) The End of the World: the science and ethics of human extinction, London: Routledge

Sober, E. (2003)‘An Empirical Critique of Two Versions of the Doomsday Argument – Gott’s Line and Leslie’s Wedge’, Synthese, 135-3, 415-30

Sowers, G. F. (2002) ‘The Demise of the Doomsday Argument’, Mind, 111, 37-45

1 La présente analyse de DA constitue le prolongement de Franceschi (2002).

2 Cf. Korb & Oliver (1998).

3 La description originale par Bostrom de l’expérience des deux urnes se réfère à deux urnes distinctes. Dans un souci de simplicité, je me réfère ici, de manière équivalente, à une seule urne (qui contient soit 10, soit 1000 boules).

4 De manière plus précise, Leslie considère une analogie avec l’expérience de la loterie.

5 Cf. (2003, p. 9): “But who or what has the propensity to randomly assign me a temporal location in the duration of the human race? There is no such mechanism”. Mais Sober s’intéresse surtout à fournir des preuves par rapport aux hypothèses utilisées dans la version originale de DA et à élargir le champ de l’argument en déterminant les conditions de son application à des situations concrètes.

6 Cf. (1997, p. 251).

7 Cf. (2002, p. 39).

8 J’emprunte cette terminologie à Chambers (2001).

9 D’autres variations de l’expérience des deux urnes++ peuvent même être envisagées. En particulier, des variations de l’expérience où le processus aléatoire s’opère de manière diachronique et non synchronique (c’est-à-dire au temps T0) peuvent être imaginées.

10 Cf. Sowers (2002, p. 40).

11Les expériences des deux urnes synchronique et diachronique peuvent toutes deux donner lieu à une variation incrémentale. La variation incrémentale de l’expérience des deux urnes (synchronique) a été mentionnée plus haut : il s’agit de l’expérience des deux urnes++. Il est de même possible de construire une variation incrémentale analogue pour l’expérience des deux urnes diachronique, où l’éjection des boules s’effectue à des intervalles temporels réguliers. À ce stade, il apparaît que les deux modèles concurrents peuvent donner lieu à une telle variation incrémentale. Ainsi, le fait de considérer les variations incrémentales des deux modèles concurrents – l’expérience des deux urnes++ synchronique et l’expérience des deux urnes++ diachronique, n’apporte pas ici d’élément nouveau par rapport aux deux expériences originales. De même, on pourrait considérer en effet des variations où le tirage aléatoire s’effectue non pas en T0, mais de manière progressive, ou des variations où une pièce quantique est utilisée, etc. Mais dans tous les cas, de telles variations sont susceptibles d’être adaptées à chacun des deux modèles.

12 Leslie (1993, p. 490) évoque ainsi: “(…) the potentially much stronger objection that the number of names in the doomsday argument’s imaginary urn, the number of all humans who will ever have lived, has not yet been firmly settled because the world is indeterministic”.

13 Le problème de la classe de référence dans la théorie des probabilités est notamment exposé dans Hájek (2002, s. 3.3). Pour un traitement du problème de la classe de référence dans le contexte qui est celui de DA, voir notamment Eckhardt (1993, 1997), Bostrom (1997, 2002, ch. 4 pp. 69-72 et ch. 5), Franceschi (1998, 1999). Le point souligné dans Franceschi (1999) peut être interprété comme un traitement du problème de la classe de référence au sein de la théorie de la confirmation.

14 Cf. 1996, p. 260-261.

15 Cf. Leslie (1996, p. 259).

16 Cf. Leslie (1996, pp. 258-9): “The thing to note is that the red ball can be treated either just as a red ball or else as a red-or-green ball. Bayes’s Rule applies in both cases. […] All this evidently continues to apply to when being-red-or-green is replaced by being-red-or-pink, or being-red-or-reddish”.

17 Cet aspect important de l’argument est également souligné dans Delahaye (1996). Il s’agit aussi du thème principal de Sober (2003).

18 Je suis reconnaissant envers Nick Bostrom pou des discussions utiles sur le problème de la classe de référence, ainsi qu’envers Daniel Andler, Jean-Paul Delahaye, John Leslie, Claude Panaccio, Elliott Sober, ainsi qu’un expert anonyme pour le Journal of Philosophical Research, pour des commentaires utiles sur de précédentes versions de cet article.